
The GRASP Package. An overview.

Generalized Retrieval of
Atmosphere and Surface Properties

Oleg Dubovik, Laboratoire d'Optique
Atmosphérique <oleg.dubovik@univ-lille.fr>

Fabrice Ducos, Laboratoire d'Optique
Atmosphérique <fabrice.ducos@univ-lille.fr>

David Fuertes, GRASP SAS <david.fuertes@grasp-sas.com>

The GRASP Package. An overview. : Generalized Retrieval of
Atmosphere and Surface Properties
by Oleg Dubovik, Fabrice Ducos, and David Fuertes

A browsable, and possibly more up-to-date, version of this document can be obtained here:

http://www.grasp-open.com/doc

This document describes an overview of the GRASP project, its goals and its architecture. If you want to contribute
to the development, you may be more interested in the technical documentation [http://www.grasp-open.com/
tech-doc].

The source code of this documentation is in the same repository as GRASP open algorithm. If you want to
contribute with your corrections, please check how to do it in User documentation chapter [http://www.grasp-
open.com/tech-doc/chap02.php#chap020201].

Publication date 01 February 2024
Copyright © 2024

http://www.grasp-open.com/doc
http://www.grasp-open.com/tech-doc
http://www.grasp-open.com/tech-doc
http://www.grasp-open.com/tech-doc
http://www.grasp-open.com/tech-doc/chap02.php#chap020201
http://www.grasp-open.com/tech-doc/chap02.php#chap020201
http://www.grasp-open.com/tech-doc/chap02.php#chap020201

Table of Contents
Foreword ... viii

1. Caveat ... viii
2. What you will find in this document ... viii
3. What you won't find in this document ... viii
4. Versioning ... viii

1. Introduction .. 1
1.1. Scientific background and heritage ... 1
1.2. Generalized aspects of GRASP algorithm and package ... 1

1.2.1. Generalized approach of numerical inversion ... 2
1.2.2. Practical generalization of the algorithm for atmospheric remote sensing 3
1.2.3. Adaptation of GRASP for general user ... 4

1.3. Concept of GRASP software package ... 5
2. GRASP software package .. 7

2.1. GRASP architecture ... 7
2.2. GRASP input and retrieved data .. 7

2.2.1. Measurements and retrieved parameters .. 7
2.2.2. GRASP inputs .. 8
2.2.3. GRASP input data structures ... 9
2.2.4. Input text files for running the Scientific Core alone 9

2.3. GRASP Scientific Core algorithm .. 9
2.3.1. Overall structure ... 9
2.3.2. Forward model .. 10
2.3.3. Numerical Inversion ... 12

2.4. GRASP Control Unit .. 14
2.4.1. Configuration manager ... 15
2.4.2. Controller Module ... 15
2.4.3. Abstract input and output drivers ... 16
2.4.4. Concrete input and output data drivers .. 16
2.4.5. GRASP file organization .. 17
2.4.6. External Libraries used by GRASP code .. 18

3. Installation .. 20
3.1. Introduction .. 20
3.2. Hardware requirements ... 20
3.3. Operating Systems ... 20
3.4. Access to GRASP Open repository ... 20
3.5. Building and installing GRASP .. 21

3.5.1. Dependencies .. 21
3.5.2. Basic installation of GRASP ... 22
3.5.3. Advanced compilation .. 23

3.6. Running the code ... 25
3.6.1. Usage of GRASP: The configuration file ... 27

3.7. Code repository and extensions .. 29
3.7.1. GRASP Manager ... 30

3.8. Known problems ... 31
4. How to use GRASP .. 32

4.1. How to run the code .. 32
4.1.1. Settings file .. 32
4.1.2. Retrieved characteristics ... 39
4.1.3. Noise simulation ... 42

4.2. Input module ... 43
4.2.1. The SDATA format ... 43
4.2.2. Angle definition .. 47
4.2.3. Input information for characteristics .. 50
4.2.4. How to prepare the photometer data ... 51
4.2.5. How to prepare the lidar data .. 51

iii

GRASP

4.2.6. How to prepare nephelometer data ... 53
4.3. Output module .. 53

4.3.1. The list of GRASP output parameters ... 54
4.3.2. GRASP classic output description .. 58

4.4. Forward model .. 61
4.4.1. How to use the forward model: Derived products and reprocesing data 61
4.4.2. Synthetic data ... 61

4.5. Aerosol modeling in GRASP ... 61
4.5.1. Kernels .. 61
4.5.2. Models .. 62
4.5.3. Chemistry .. 63
4.5.4. Transport models ... 64

4.6. Error estimation ... 67
Bibliography ... 70
Glossary ... 71

iv

List of Figures
1.1. Structure of the GRASP software package ... 2
1.2. Structure of the GRASP software package ... 4
1.3. Structure of the GRASP software package ... 5
2.1. The architecture of the GRASP software package .. 7
2.2. Illustration of managing input data for GRASP software package. 8
2.3. General structure of the GRASP scientific algorithm (Fig.3 in Dubovik et al. 2011). 10
2.4. General organization of Forward modeling in the algorithm ... 11
2.5. Organization of GRASP Numerical Inversion: Single-Pixel Scenario 12
2.6. Organization of GRASP Numerical Inversion: Single-Pixel Scenario 13
2.7. Organization of GRASP Numerical Inversion: Multi-Pixel Scenario 14
2.8. Illustration of the data processing by the Controller ... 16
2.9. Structure of the utilization of public standard libraries in the GRASP code 18
3.1. Excerpt of configuration file .. 28
4.1. Translation of settings file into initial guess array .. 41
4.2. Evolution of retrieved characteristics during GRASP processing 41
4.3. An example of SDATA file ... 44
4.4. Definition of GRASP geometry .. 48
4.5. Ground based angles definition example .. 49
4.6. Example of a possible use of imagedat .. 50
4.7. An example of the residual information in GRASP classic output 58
4.8. An example of the vector of retrieved parameters in GRASP classic output 59
4.9. An example of the aerosol volume concentration in GRASP classic output for two aerosol
modes .. 59
4.10. An example of the Aerosol Optical Depth in GRASP classic output for two aerosol
modes .. 60
4.11. An example of the fitting information in GRASP classic output for one wavelenght of
one pixel with TOD and irradiance measurements ... 60

v

List of Tables
3.1. SPARSE_SOLVER's valid values ... 24
3.2. BLAS valid values ... 24
3.3. Main CONSTANTS_SET values (installed by default) ... 24
3.4. BUILD valid values ... 25
3.5. Some common settings ... 27
4.1. List of GRASP options ... 33
4.2. Available GRASP characteristics .. 40
4.3. The SDATA main structure ... 44
4.4. The CELL structure ... 45
4.5. The PIXEL structure .. 45
4.6. Types of measurements ... 47
4.7. Specific examples in ground based angle definition example .. 49
4.8. Sunphotometer angle description .. 49

vi

List of Equations
4.1. Conversion from absolute radiances to normalized, reduced radiances 47
4.2. Conversion from θgb (ground based) to θG (GRASP) .. 48
4.3. Conversion from ϕgb (ground based) to ϕG (GRASP) ... 48
4.4. Conversion from θn (nephelometer scattering angle) to θG (GRASP) 50

vii

Foreword
1. Caveat

This document is under development. To write a documentation is a hard task and usually the code
evolves quicker than the documentation. We are doing a big effort to document all details of the
software. While the project will mature, new chapters will be draft and old ones will be revised in
order to stay as close as possible in sync with the actual realization. Please, keep tuned and check
regularly the news in this document. Also, remember that the source code of the documentation is in
same repository that GRASP software allowing everybody to contribute to this document. If you are
interesting in contribute making corrections or adding new text we will be very glad of receive your
suggestions. In that case, please, have a look to the technical documentation to know how to contribute
(www.grasp-open.com/tech-doc [http://www.grasp-open.com/tech-doc/]).

2. What you will find in this document
• A general vision of scientific algorithm

• A general vision of software arquitecure

• How to compile the code including description of prerequisites

• How to run the code including a general vision about how it works

• References to other documents, especially to the detailed documentation of the major components
of the system when it is available or scientific papers.

3. What you won't find in this document
• A detailed description of the scientific algorithm, one refers to Dubovik et al. 2011 [http://

www.atmos-meas-tech.net/4/975/2011/amt-4-975-2011.html] for more information.

• A detailed description of each module, routine or data structure being part of the production system.
For developers, technical documentation is provided as another documentation. Please, have a look
to: www.grasp-open.com/tech-doc [http://www.grasp-open.com/tech-doc/]

• A documentation of all extensions of the software. Each extension has to have its own
documentation. Here it is described only main GRASP package and only if an extension provide a
very important feature which is widely used it can be described here exceptionally.

4. Versioning
GRASP software born many years ago. In 2013, the developement team started the tag releases with
following format vXX.YY.ZZ where XX is the number of major version, YY is the number of minor
version and ZZ the revision. This nomenclature system is valid from first stable version (v1.0.0) that
at the moment of write this lines it does not exist yet. Beta versions (v0.YY.ZZ) will follow more
flexible rules of naming and it each name will be decided by the developer team taking into account if a
version introduce new important features, break the compatibility with previous versions, etc. For most
curious people, first GRASP tag was v0.2.0 and it was not public yet. The code started to be publicly
available from the version v0.7.0 and regularly, developer team releases the latest developments with
really innovative features.

viii

http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/
http://www.atmos-meas-tech.net/4/975/2011/amt-4-975-2011.html
http://www.atmos-meas-tech.net/4/975/2011/amt-4-975-2011.html
http://www.atmos-meas-tech.net/4/975/2011/amt-4-975-2011.html
http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/

Chapter 1. Introduction
This document provides an introductive description of GRASP software package for general users.
At the same time, it is expected that the users interested in the package are familiar with the field
of atmospheric remote sensing and have, at least, basic of understanding of the problematic. The
document does not include the details description of the scientific algorithm. The relevant scientific
content can be found in publication following the citations provided in the text below. This document
does not include the elaborated technical details either (for developers). That information can be
found on GRASP technical documentation, provided on line (www.grasp-open.com/tech-doc [http://
www.grasp-open.com/tech-doc/]). This description is aimed to explain how to handle the software
package and orient the qualified user regarding actions needed for adapting the software to a specific
application and for contributing into the evolution and the improvement of the GRASP software and
the overall concept. Additionally, for extra services such as code adaptations, specific developments or
code optimization for specfic purposes, GRASP SAS company can be contacted (www.grasp-sas.com/
tech-doc [http://www.grasp-sas.com]).

1.1. Scientific background and heritage
GRASP (Generalized Retrieval of Atmosphere and Surface Properties), introduced by Dubovik et al.
(2014), is the first unified algorithm and a software package developed for retrieving atmospheric
properties from wide variety of remote sensing observations including satellite, ground-based and
airborne passive and active measurements of atmospheric radiation and their combinations.

GRASP relies on the heritage of retrieval advances [Dubovik and King, 2000, Dubovik et al. 2000,
2002a,b. 2009] implemented for AERONET (see Holben et al., 1998) a worldwide network of over 300
radiometer sites that generate the data used to validate nearly all satellite observations of atmospheric
aerosols. The AERONET retrievals derive detailed aerosol properties (Dubovik et al. 2002a) including
absorption, providing information of vital importance for reducing uncertainty in assessments of
climate change. The concept of GRASP was proposed in the recent efforts by Dubovik et al. (2011)
to develop the algorithm for improved aerosol retrieval from the French Space Agency’s PARASOL
imager (see Tanre et al. 2011) over bright surfaces like deserts where high surface reflectance dwarfs
the signal from aerosols. In these efforts several principles used in AERONET retrieval concept were
used and applied for PARASOL satellite retrieval. Then, in return, several new features of newly
developed PARASOL retrieval by Dubovik et al. (2011) appeared to be useful for improving ground-
based measurements interpretation by combining observations of radiometer and lidar [Lopatin et al.,
2013]. Finally, the structure of the algorithm was adapted to convenient and efficient application with
diverse remote sensing observations and their combinations.

1.2. Generalized aspects of GRASP algorithm
and package

The important feature of the GRASP is that both the core scientific algorithms and the whole package
are based on several generalization principles with the idea of developing a scientifically rigorous,
versatile, practically efficient, transparent, and accessible algorithm.

There are several “layers” of complimentary generalizations used in the GRASP designs, that are
outlined in the diagram shown in Figure 1.1, “Structure of the GRASP software package”

1

http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/
http://www.grasp-sas.com
http://www.grasp-sas.com
http://www.grasp-sas.com

Introduction

Figure 1.1. Structure of the GRASP software package

1.2.1. Generalized approach of numerical inversion

The corner stone of the GRASP is the used approach for implementing numerical inversion that
is highly elaborated and is highly abstract in the sense that it is not linked in any way to specific
measurement type. Here are the key elements of the inversion approach employed at the GRASP
package:

• The main part of the inversion concept is formulated for inverting abstract "indirect measurements"
independent of the physical nature;

• The used mathematical inversion formalism (Dubovik 2004, Dubovik et al. 2011, etc.)
complementarily unites advantages of a variety of practical inversion approaches of known
mathematical inversion procedures;

• The specific numerical procedure is defined as Multi-Term LSM (Least Square Method) statistically
optimized fitting of "positively redundant 1 set of observations". The Multi-Term LSM follows
general Least Square concept, however it explicitly considers all inverted data (both the actual
observations and used a priori constraints) as "observations" known with different levels of
accuracies. As a result, the concept is highly practical:

a. it benefits from numerous known fundamental developments relevant to LSM (i.e. no need to
invent new fundamental principles of optimized inversion);

b. the methodology is highly suitable for inverting combined data (both observations and a priori
constraints).

1 i.e. formally redundant in the sense that the number of inverted observations exceeds the number of retrieved parameters

2

Introduction

1.2.2. Practical generalization of the algorithm for
atmospheric remote sensing

Though the numerical inversion is highly abstract of the measurement type, and can be applied to any
indirect measurements, the GRASP package was developed for application in the field of atmospheric
remote sensing with pursuing the following generalization ideas:

• Making GRASP instrument-independent algorithm, as a result GRASP can be applied to
ground-based, satellite and airborne, passive and active measurements and the spectral, angular,
polarization, etc. specifications can be changed flexibility within applicability of GRASP "forward
model";

• Implementing "forward modeling" simulation of the measurements using accurate approach with
minimum dependence of the algorithm on the a priori assumptions (atmospheric radiation is
calculated on-line without using look-up-tables);

• Applicable to the combined data from the same instrument: i.e., the data can be obtained both in the
exactly same location at different observation times or/and at different (e.g. neighboring) locations
at the same or different time moments;

• Applicable to multi-instrument retrievals, i.e. both single observations and extended data sets
of observations by different instruments can be processed simultaneously (in highly synergetic
way). Since the remote sensing observations (especially from space) are often composing images,
Dubovik et al. (2011) proposed improving retrieval using multi-pixel principle when a group
of pixels is inverted simultaneously under additional inter-pixel constraints. This principle was
realized using rigorous approach of inversion optimization (see more explanations below and related
articles) and may significantly improve the retrieval results. However, applying multi-pixel retrieval
requires specific elaborated data preparation. Therefore, the additional "service" pieces of software
were developed as part of GRASP package that significantly simplified practical application of the
GRASP multi-pixel approach to real observations. Thus, GRASP realizes processing of global (or
regional) time series of instrument observations as illustrated in Figure 1.2, “Structure of the GRASP
software package”. The entire image is divided by the user into geo-located grid composed by
rather large data sets that are called "tiles", each tile is composed by "segments" groups of adjacent
segments of the observation "pixels". Correspondingly, GRASP can be set to process: (i) only one
pixel, (ii) only one segment, (iii) tiles, i.e group of segments.

3

Introduction

Figure 1.2. Structure of the GRASP software package

1.2.3. Adaptation of GRASP for general user

In addition to elaborated theoretical concepts (numerical inversion approach, modeling of atmospheric
radiation and image processing approach) GRASP was designed with the idea of making convenient
"research tool" that can be used by a user possessing general knowledge in remote sensing retrieval but
not familiar with the details of source code routines. Therefore, the following user-oriented principles
were realized in GRASP:

• Possibility for user to construct custom retrieval using GRASP, i.e. user set up the inversion of the
same observations in many different ways by choosing:

• different sets (in terms of number and type) of the retrieved and a priori known (and/or even
fixed) parameters;

• different approaches in making forward simulations;

• different assumption for noise distribution in the inverted data;

• different sets of a priori constraints for retrieved parameters;

• different standard procedures used in numerical inversion (i.e. for solving linear systems);

• different approaches for data processing: inverting each pixel independently, inverting large
images (see Fig.2), combining available independent co-incident and/or co-located observations;

• etc.

• User independence of specific program realization, because the management of GRASP inputs is
done using command lines, not symbols, that represent the "names" of parameters or procedures
and can be understood by a user that has general knowledge in the atmospheric retrieval.

4

Introduction

1.3. Concept of GRASP software package
The key component of the software package is the scientific GRASP core. This is a code that
implements actual inversion of remote sensing observations following the retrieval procedure assumed
by scientific algorithm. Initially, the scientific GRASP core was used directly for processing
observations by reading the input data from files and providing retrieval output on the screen or/and in
the file. However, in order to achieve the highly optimized processing of large volumes of data, such
as satellite observations, the scientific GRASP core has been complemented by the development of
the control unit – software package that manages the preparations of observations, implementation
of actual retrievals by scientific code and the output of results. The utilization of the control unit
allows an implementation of the retrieval without generating intermediate input/output files and a
number of other optimizations of applying scientific core . In other words the communication of user
or processing routing with the scientific core passes via the control unit as illustrated in Figure 1.3,
“Structure of the GRASP software package”.

Figure 1.3. Structure of the GRASP software package

Such set up of the scientific package was designed for simplifying the processing of large satellite
images by GRASP. Thus, while original GRASP scientific core could provide the retrieval for only
one pixel or segment (see Figure 1.2, “Structure of the GRASP software package”), using the control
unit manages application of retrieval to the groups of segments (a tile). This approach provides a
number of conveniences in employing GRASP for processing the actual observations. Indeed, now
the GRASP can read directly a raw data archive and perform data preparation on the fly and without
generating intermediate files. The code can manage large volumes of data: the control unit organizes
input data, implements multiple calls of the scientific core, obtains the output for all archives, may
manage the display of the results, etc.

In addition, the development of the control unit resulted in many convenient features of managing
scientific core, not only at the level of the tiles processing of observation data, but also in implementing
the retrievals of the segments and even single pixels. For example, the input texts files were replaced
by settings files in YAML format that significantly improves the user-interface:

• all inputs can be provided in a standard format instead of a specific one developed only for GRASP;

• the settings are driven by the text commands that can be organized in any order (only the content
is important);

• information redundancy was decreased because structure and size of arrays are automatically
adapted to the input defined by the user.

5

Introduction

• All settings are auto-documented: every parameter has a description directly in the code that can
be viewed calling help command.

It should be noted that the current version of the GRASP software conserves the possibility of running
scientific core without using the control unit. While this option may be of some interest for the GRASP
developers, the utilization of the entire package (including control unit) is the recommended approach
for general GRASP users.

6

Chapter 2. GRASP software package
2.1. GRASP architecture

Figure 2.1, “The architecture of the GRASP software package” illustrates the architecture of
the GRASP software package organization. This architecture deploys decoupled independent
modules, such as configuration (settings) module, scientific core and the controller module, which
communicates between them. The dashed boxes show the application-specific modules (input / output
drivers) that can be optionally added to the GRASP software package.

This design by modules of the package aims at minimizing dependencies between developed
subsystems and enabling its extensibility. As a result, the two most valuable aspects realized in the
GRASP architecture are:

i. the common interfaces were defined for the replaceable elements;

ii. evolution of the scientific core without modifications of the whole package.

Figure 2.1. The architecture of the GRASP software package

2.2. GRASP input and retrieved data
2.2.1. Measurements and retrieved parameters

The list of measurements and the retrieved parameters can present a variety of possibilities. This list
can change strongly depending on the selected application and the inversion strategy. An example of
the measurements and the retrieved parameters configuration for the PARASOL space observation
application can be found in Dubovik et al. (2011). Therefore, this document refers to the inverted
observations and retrieved properties using the terms: "input measurements/observations", "retrieved
parameters/characteristics". The details of the application of the GRASP algorithm to specific

7

GRASP software package

measurements are expected to be clarified to users from the comments included in the input and the
text of the source files. Examples and relevant scientific discussion can be found in referred articles.
Additionally, the software package is distributed together with some examples. Once the code is
compiled and ready to be executed, the users are encouraged to consult and run the examples.

2.2.2. GRASP inputs
The inputs of GRASP contain the following information:

• measurements;

• definition of unknowns (and the employed forward model);

• retrieval setting and a priori constraints.

It should be noted that the inputs include not only the actual observations needed to be inverted, but
also an ancillary information that drives many aspects of the retrieval. For instance, the employed
"exact forward model" and the assumptions, the variety of a priori constraints, the mathematical and
logical procedures, etc. Though, such information is generally expected in the input for any retrieval,
the GRASP stands out from most of existing retrieval methods/codes by the flexibility of the retrieval
and the versatility of its applicability.

The GRASP input is separated into two groups:

• "measurements" – includes the actual values of measurements and some information of their
configurations;

• "retrieval settings" – includes all information about retrieval implementation (description of the
retrieved characteristics, all settings for forward simulations and numerical inversions, etc.)

As shown in Figure 2.2, “Illustration of managing input data for GRASP software package.”,
when the GRASP package is employed for operational processing, the observation are provided
by the control unit from the data reader and the user defines the retrieval using YAML
configuration file . If the scientific core is running as a standalone code, the next input
text files are used: SDATA_INSTRUMENT.dat – the file containing the observation data
INPUT_ INSTRUMENT.txt – the file containing the retrieval configuration information. The
SDATA_INSTRUMENT.dat input file can also be used with the control unit. This is a useful option
while applying GRASP to a new type of data aiming for the functionality and sensitivity tests.

Figure 2.2. Illustration of managing input data for GRASP software package.

8

GRASP software package

2.2.3. GRASP input data structures

The control unit provides the measurements to the retrieval via "SDATA measurement structure",
prepared using a specific data reader. The description of the structure is provided in Section 4.2.1,
“The SDATA format”. The configuration information is provided by the control unit from the
YAML configuration files, described in Section 4.1.1, “Settings file”. The list of parameters and their
explanations are provided in Section 4.1.1.1, “HELP argument”. This information can be directly
assessed by typing "help" command.

2.2.4. Input text files for running the Scientific Core
alone

Retrieval library keeps its old capability of running as a stand alone application. In this case, the
measurements description has to be provided in sdata format (see Section 4.2.1, “The SDATA
format”). In fact, this format also works when the entire system is executed because it was ported from
the scientific library to the entire system. This format is an easier one for the scientific community.
When the entire system is executed, a settings file in YAML format defines the inversion strategy.
In the case of using the scientific core as a stand alone application, a settings file in ascii format has
to be provided. Each parameter in this file has a specific fixed location that should be respected. The
curent guide, however, does not describe this file structure. Please note that the scientific module can
be isolated and tested independently, but it is only for development purposes. If the reader is interested
in knowing more details about that, the technical documentation can be reviewed (www.grasp-
open.com/tech-doc [http://www.grasp-open.com/tech-doc/]). Note also that, for a general user, it is
not recommended to run separately the scientific library.

2.3. GRASP Scientific Core algorithm

2.3.1. Overall structure

The structure of the scientific GRASP code is shown in Figure 2.3, “General structure of the GRASP
scientific algorithm (Fig.3 in Dubovik et al. 2011).”. The code and retrieval are organized as an
interaction of the two main functionally different modules: "Numerical Inversion" and "Forward
model". The "Numerical Inversion" is the module that drives the whole retrieval, therefore it can
be considered as hierarchically the main part of the core algorithm program that determines the
retrieval data flow. The "Forward model" implements simulations of the inverted observations. The
overall GRASP development concept emphasizes the generalized structure of the algorithm and
the retrieval. This assumes that the algorithm should be versatile, i.e. applicable to variety of remote
sensing observations, and enable some flexibility in choosing retrieval approaches. For instance,
choosing of different: assumptions of overall retrieval; mathematical procedures; physical models for
simulating observations; presentations of obtained results, etc. Therefore, both "Numerical Inversion"
and "Forward model" modules are adapted for implementing varieties of different procedures. At the
same time, the data flow interaction between these modules and a high tolerance of overall code to
the modifications inside of each module are implemented. The information transmitted from the input
"Observation definition" and the "Inversion settings" modules determines the actual regime of the
retrieval execution.

9

http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/

GRASP software package

Figure 2.3. General structure of the GRASP scientific algorithm (Fig.3 in
Dubovik et al. 2011).

The data flow exchange between the "Numerical Inversion" and the "Forward model" modules, as
illustrated in Fig. 6, includes the information about the following values:

f * vector of inverted measurements,

f (a p) vector of measurement fit at p-th iterations,

a p vector of unknowns at p-th iteration (retrieved parameters).

The content of these vectors was denoted in the describing input section.

The scientific GRASP code is written in Fortran 90. In the technical documentation [http://www.grasp-
open.com/tech-doc/] there are descriptions of the structure of data flows, the source file structure and
the locations.

2.3.2. Forward model

The "forward model" module implements simulations of the inverted remote sensing observations.
The GRASP "forward model" is rather a universal one, i.e. can simulate large variety of remote sensing
observations (passive and active observations obtained from ground and space). Also it consists from
several distinct blocks (Figure 2.1, “The architecture of the GRASP software package”): aerosol single
scattering; surface reflectance; and radiative transfer calculations. These blocks are semi-independent
in the sense that each block can be changed or entirely replaced with no effect or minimal effect on
other parts of the "forward model" routine. For example, GRASP "forward model" allows to choose
physical approaches/models for simulating surface reflectance.

10

http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/

GRASP software package

Figure 2.4. General organization of Forward modeling in the algorithm

Depending on the inverted data, only a part of the "forward model" can be used. The dashed lines
in Figure 2.4, “General organization of Forward modeling in the algorithm” indicate that only single
scattering or surface reflectance calculations can be used by the code, if accounting for multiple
scattering is not needed, as in the cases when measurements of spectral AOD, phase matrices or lidar
data are inverted. Moreover, the design assumes a possibility for users to add to the GRASP "forward
model" other routines implementing similar simulations. For example, the subroutine implementing
radiative transfer calculations can be replaced by a subroutine implementing another method to account
for multiple scattering. In the future, several new modules are planed to be included in the "forward
model", such as the module for accurate modeling of the gaseous absorption, the module for radiative
transfer calculation for thermal infra red spectral range, etc.

In the GRASP code, the "Forward model" is driven by a single subroutine
"forward_model_pixel_PHMX" located in the file "forw_model.f90" (see technical documentation
[http://www.grasp-open.com/tech-doc/]). Aerosol single scattering properties are simulated
assuming aerosol as mixture of randomly oriented spheroids using of DLS spheroid package
(Dubovik et al. 2006). This package can be provided as an independent program with some
descriptive documentation. Surface reflectance BRDF and BPDF can be calculated using a variety of
subroutines representing different models (see scientific description in Dubovik et al. 2011 and directly
in technical description included in the GRASP code settings file). Radiative transfer calculation
accounting for multiple scattering effects in GRASP is implemented by on-line radiative transfer
calculations using Successive Order of Scattering method using the program developed by M. Herman
(the method is documented in the paper by Lenoble et al. 2007). The modules for aerosol single
scattering and BRDF, BPDF are easily extractable from the program and can be easily used with
other radiative transfer codes if needed. In addition, some input parameters in the configuration file
define the regimes of the radiative transfer calculation implementations. Specifically, a number of
trade-offs between accuracy and speed can be used including the possibilities of changing the number
of terms M used in the expansion of the phase matrix into Legendre polynomials, the number of

11

http://www.grasp-open.com/tech-doc/
http://www.grasp-open.com/tech-doc/

GRASP software package

terms N used in Gaussian quadrature for zenithal integration, number of numerical layers in vertical
atmosphere properties integrations, etc.

2.3.3. Numerical Inversion
The "numerical inversion" is a main and most complex part of the code from the functional and the
logistical point of view that governs the flow of the data. The description of the algorithm and the
details of the approach are given in the scientific papers listed in Section 1. Here we provide only
a short description sufficient for understanding the structure and the organization of the GRASP
Scientific Core.

The program includes two main "layers" (parts): Single-pixel inversion and Multi-pixel inversion.

2.3.3.1. Single-pixel inversion

The structure of the single-pixel inversion is illustrated in Figure 2.5, “Organization of GRASP
Numerical Inversion: Single-Pixel Scenario”. It includes the following main operations:

i. Modeling observations f (a p) for state vector p-th approximation (for p=0, initial guess is used);

ii. Calculation of matrices of first derivatives K p Jacobians;

iii.Forming p-th Normal System: A p ∆ a p = ∇ Ψ p , where A p Fisher matrix; Ψ(a p) residual;

∇ Ψ p gradient of Ψ (a p).

iv. Solving Normal System to determine ∆ a p , and correcting the solution approximation a p+1 =
a p t ∆ a p so that: Ψ p - Ψ p+1 > 0;

v. Repeating steps i - iv until ∆ Ψ = Ψ p - Ψ p+1 changes significantly i.e. until ∆ Ψ / Ψ p < ε

Figure 2.5. Organization of GRASP Numerical Inversion: Single-Pixel Scenario

12

GRASP software package

2.3.3.2. Multi-pixel inversion

The multi-pixel retrieval approach proposed by Dubovik et al. (2011) is illustrated in Figure 2.6,
“Organization of GRASP Numerical Inversion: Single-Pixel Scenario”. This is a new and very
promising retrieval concept when a large group of "pixels" (instantaneous set of satellite data
over one location) is inverted simultaneously. This approach allows a significant enhancement of
atmospheric properties retrievals from remote sensing imagery by using additional a priori information
on "correlation" between characteristics in different pixels of the inverted group. In addition, this
principle allows a combination of different sets of coordinated observations, even when they are not
perfectly co-incident and co-located (see Dubovik et al. 2014).

Figure 2.6. Organization of GRASP Numerical Inversion: Single-Pixel Scenario

The multi-pixel scenario retrieval was implemented in the code with the idea of achieving
maximum benefits from the similarities in the mathematical and logistical operations between the
single and multi-pixel retrievals. As a result, the multi-pixel retrieval, which is a more complex
procedure compared to conventional single-pixel retrieval, was realized by implementing only limited
modifications of the program. This approach practically does not increase calculation time (per pixel)
and does not change (complicate) the code organization.

The structure of multi-pixel inversion is illustrated in Figure 2.6, “Organization of GRASP Numerical
Inversion: Single-Pixel Scenario” for a segment, i.e. a group of N inverted pixels . It includes the
following operations in addition to those realized for single-pixel retrieval scenario:

i. A loop implementing steps i – iii (of single-pixel procedure) for N pixels and forming N single-
pixel Normal Systems A i, p ∆ a i

p = ∇ Ψ i
p ;

ii. Forming single Normal System for the tile of N pixels by arranging N single-pixel Normal Systems
into a sparse diagonal matrix structure and adding the matrix Ω inter defined using a priori inter-
pixel smoothness constraints;

iii.Forming p-th Normal System:

13

GRASP software package

A p ∆ a p = ∇ Ψ p ,

where A p Fisher matrix; Ψ (a p) residual; ∇ Ψ p gradient of Ψ (a p).

iv. Solving Normal System for the tile of N pixels to determine ∆ a p , and correcting the solution
approximation a p+1 = a p t ∆ a p so that: Ψ p - Ψ p+1 > 0;

v. Repeating steps i – iv until change of residual ∆ Ψ = Ψ p - Ψ p+1 is significant i.e. until ∆ Ψ / Ψ p < ε

Figure 2.7. Organization of GRASP Numerical Inversion: Multi-Pixel Scenario

2.4. GRASP Control Unit
The control unit is a set of "service" programs that brings the application of the scientific GRASP
algorithm to the operational level, first of all in the context of the processing of the data from satellite
missions, such as PARASOL. It also provides a number of convenient for user features for applying
GRASP to the observation and significantly reduces and simplifies the efforts in the development of
new GRASP applications.

The control unit addresses a number of practical aspects:

• The original GRASP scientific core has been designed as a standalone application for processing
a limited amount of observations both in spatial and temporal extent. However, integration of this
original program to operational processing of remote sensing observation, such as global satellite
observations, requires significant efforts on refactoring the scientific module and adapting it to
operational data production environment.

• The data preparation for GRASP multi-pixel retrieval in processing satellite images is more complex
than for classic operational retrievals, since the number of level-1 inputs needed for one level-2
output may range from a few days to several weeks. Correspondingly, the system must be able to

14

GRASP software package

load the significant volume of data without exhausting the available memory. Also, a compromise
between the spatial and temporal extent of multi-pixel retrieval application has to be found in order
to satisfy the available memory constraints and processing time requirements.

• Though performance of GRASP algorithm is under constant improvement, the GRASP is a more
complex and generally slower code than most of the conventional retrieval approaches. Therefore, a
possibility of simultaneous retrievals is desirable for benefiting from parallelization of observation
processing.

• The level of input data preprocessing for GRASP multi-pixel retrieval is significantly higher
because inverted tails of (satellite) observations to be composed from observations acquired at
different times should characterize the same grid of geo locations. Therefore, some kind of
regridding is generally required in addition to common data preprocessing (application of cloud
mask, gas corrections, etc.).

• The GRASP is versatile algorithm that has the potential to perform retrievals from diverse remote
sensing observations and their combinations sensors, ranging from the ground-based photometers,
radiometers and lidars to imagers onboard satellites. Therefore, adaptation of the GRASP algorithm
for diverse observations should be always foreseeing. One of the main objectives of the control unit
is to split the operations of the scientific algorithm and those of the data preparation.

The control unit manages all the system interactions with the processing environment. It loads the
configuration settings. It is also responsible for receiving events from the system and provides the
control commands for the application (the connection with the user interface). The control unit consists
of the following unites (see Figure 2.1, “The architecture of the GRASP software package”):

2.4.1. Configuration manager

One of the first responsibilities of the controller is to load the configuration settings for the processing
(production settings and scientific settings, such as initial guesses, number of parameters for the
forward model etc). The configuration manager provides the possibility to deal with all the settings,
including both the production and the scientific ones, in one unique way. In the development of the
control unit this approach was considered as a strategic one, even though the production settings and
the scientific settings are of entirely different nature, since they do not intervene at the same levels.

The configuration management is a key part of the developed system because the user usage experience
depends on it. This module describes the usage interface, how to work with the code to achieve results.
In addition, for developing this module it was necessary to understand, to document and to organize all
the possible options (different behaviors) of the complex retrieval code. Moreover, some refactoring
of the scientific package has been done to realize the configuration management concept.

The configuration manager controls the behavior of the control unit, as well as the peripheral elements
such as the scientific input settings. Therefore, a change in the interface of the subsystems (especially
for the scientific package as it evolves) can occur.

2.4.2. Controller Module

The GRASP executable results issued from the compilation of the controller module contains the
main routine of the system. As illustrated in Figure 2.8, “Illustration of the data processing by the
Controller”, the controller governs the data processing:

• gets orders and other events from the runtime interface

• performs actions in response to the events

15

GRASP software package

Figure 2.8. Illustration of the data processing by the Controller

The controller is responsible for making all the parts of the control unit work together. While it receives
events from the runtime interface, it takes actions and delegates most of its work to other modules of
the control unit, such as the input and output drivers, and certainly to the scientific package.

There are two main workflows implemented in the controller. In the sequential version, the controller
will retrieve a tile (a block of data that can be decomposed in many segments - a minimum instrument
data treated inside the retrieval) and will work segment by segment, sequentially. In the parallel
version of the controller, it can retrieve many segments at the same time, using MPI technology. The
parallelization technology allows the controller to send jobs to different cores in the system, obtaining
a lower total processed time.

2.4.3. Abstract input and output drivers
These sub-systems are responsible for preparing the input data for the scientific module and gathering
output data in the unified "abstract" format. This procedure is not dependent on the particular
application and is managed in unified manner by the GRASP scientific core. The creation of these sub-
systems within the control unit assure the versatile and "generalized" character of GRAPS algorithm,
allowing the system to be extended for specific purposes.

2.4.4. Concrete input and output data drivers
These sub-systems can be considered as peripheral sub-systems since they can be replaced in the
context of every specific application. The concrete input data drivers are responsible for the satellite
(e.g. PARASOL, MERIS) or ground-based (e.g. photometer or lidar) data loading. The rest of the
system should never communicate directly with the loading driver but always with the abstract input
bridge. The GRASP multi-pixel retrieval scenario uses multi-temporal data organized in the so-called
segments, while the native formats of the input data may be in the form of many independent files
(orbits for a given period, ancillary data, etc). Therefore, it is the role of the concrete input data drivers
to obtain the data in the native format, gather them in a single, easy-to-use object tile, and to present

16

GRASP software package

them as if they came from a single data source. Also, the input drivers may include some preprocessing
of the data, such as atmospheric gaseous correction for satellite data, application of calibration, etc.

The concrete output data drivers are responsible for the scientific retrieval output products storage.
They can be declined in several output formats, depending on the needs of the users and of the
applications, and also on the requirements of the data centers: HDF, NetCDF, GIS databases, etc. The
design of the control unit assures that the rest of the system does not interact directly with a concrete
output driver, but with an abstract output bridge that delegates the action of writing to a concrete
driver. This is because all storage formats are not adapted to all data sources and to all applications.
In addition, the control unit system allows a straightforward replacement of the storage module by
another one, if the GRASP retrieval is adapted to a new application or if an instrument is changed in
the developed application.

2.4.5. GRASP file organization
The following list shows the GRASP source files organization. The code is classified into folders. The
folders are represented by bold letters, followed by an explanation of their content.

• build: Compiled executable. It appears after the code compilation.

• doc: Technical and user documentation of the software package. The lines that appear for reading
are stored in a raw format in this folder.

• examples: Some examples of retrieving instrument data

• libs: Bridges to certain libraries (facades)

• src Source code of the GRASP software

• controller: contains the source files used by the controller main program, responsible for
organizing the calls to all the modules of the system.

• global: contains the source files of some functionalities that can be used by different submodules
of GRASP. This code is GRASP dependent, thus can not be located in the "libs" folder, but is
general enough to be used by the entire system.

• input: contains the source files used by input abstract driver - the module is responsible for
handling input data and injecting them into the scientific unit functions (the retrieval algorithm).
This module can be extended by adding an input concrete driver that can include two additional
kinds of functions: i) specific instrument drivers and ii) "transformers". i) are the functions called
for loading data from specific instrument and ii) are the functions called after reading the input,
call the scientific unit and transform the input data to scientific core GRASP algorithm.

• output: contains the source files used by the output abstract driver - a module responsible
for handling retrieval output. For example, the module creates a tile output based on single-
segment outputs. This module can be extended by the output concrete driver that may includes
different functions: 1) output segment functions - the functions that receive the output from a
segment (provided by the output abstract driver) and can use it for extracting and printing target
information; 2) output tile functions - these functions are called at the end of the process
(once the retrieval information was received by the output abstract driver) in order to print the
output for the entire tile; 3) output current functions - these functions can be called after
processing a segment (once the retrieval information was received by the output abstract driver).
Yet, the retrieval results for the entire tile will receive the tile output information as an argument.
This approach can be used for printing a current status of retrieval for a tile before finishing the
complete retrieval process.

• retrieval: source files used by the scientific unit

• constants_set: different sets of constants which define main array sizes used in the code. The
use of this constants allows to optimize the memory used by GRASP for different applications.

17

GRASP software package

• inversion: fortran functions related to numerical inversion.

• forward_model: fortran files for computation of modeled measurements (forward model)

• interfaces: routines that provide data preparation, validation and exchange between different
submodules of the scientific module

• external_interfaces: definition of connections of the code with some external softwares
(mainly superLU solver).

• utilities: general routines used in many different submodules of the scientific code such as
print routines.

• internal_files: kernels used for computing particle single scattering properties by the forward
model part of the code

• settings: contains the source files used by the configuration unit that defines the settings for the
calls to all the modules of the system.

2.4.6. External Libraries used by GRASP code

The GRASP software package allows the performance optimization of both the scientific retrieval and
the control unit by utilising the external standard libraries that are not distributed as part of the GRAPS
Open Code, but can provide some performance improvement of the code. These software packages
are available on the Internet open access and can be downloaded by the users directly with no charge.
Figure 2.9, “Structure of the utilization of public standard libraries in the GRASP code” shows the
utilization of the standard software libraries in GRASP.

Figure 2.9. Structure of the utilization of public standard libraries in the GRASP
code

(green color indicates the optional libraries, violet color indicates the optional but highly desirable
libraries, the reddish color indicates that which is currently mandatory for the control unit, but that
will be separated from the code before GRASP open is released). The licenses of each library are
indicated in parenthesis.

The following main libraries are used by GRASP:

18

GRASP software package

mpi library: the control unit has the optional feature of parallelizing segment process using mph
technology. The various mpi libraries can be used (each one with different licenses). Thus, the user can
choose the implementation of the mpi technology, using the selected software that may have different
performance and license.

lib csv: this library helps to parse the databases prepared in CSV (Comma-Separated Values) format
that is used in some input concrete drivers. This library is not needed if a specific compilation is used
(that depends on the concrete data and driver used).

grib api: this library is needed to read the grib format that is used for reading climatology information
in concrete satellite data drivers.

hdf4: this library is used to read/write files in hdf4 format. It is used in some output optional GRASP
functions. Using a specific compilation (removing these output functions) the code can be run without
using these libraries.

solver : the software package is optimized for solving linear systems. Such solver can significantly
improve the performance of GRASP in certain situations since GRASP scientific core performs
retrieval sequentially solving a number of linear systems. For example, when the multi-pixel retrieval
is performed, the GRASP scientific core solves linear systems that can be of very large dimension
and have pronounced sparse structure. The code was adapted and tested for using libraries such as
SuperLU, ViennaCL, and MUMPS. It is applicable for solution of any linear system in the GRASP
internal routine.

GLib: this is the GNU C library that contains a set of tools for programing in C. Specifically, it is
used by yaml settings library (which source code is part of GRASP settings module) helping to read
YAML files (using lib yaml dependency) and translate them into C structures. In that process GLib
is used to define internal tree structures.

lib yaml: this is low level library to parse yaml format files.

19

Chapter 3. Installation
3.1. Introduction

This section describes how to download, compile and install the GRASP Open software from the user's
perspective. Basic knowledge of the terminal and some tools such as GIT are necessary to complete
this process.

3.2. Hardware requirements
The system has been tested on modern Intel architectures only (PC compatible, Macintoshes). It should
work on any 32-bit and 64-bit platform. A minimum of 2 GB of RAM is recommended. GRASP is a
very hardware demanding software because math calculations are very time-consuming. In a multicore
scenarios GRASP is able to parallelize the entire process using MPI technology. Additionally, GRASP
offers a GPGPU module (as extension, not installed by default) that allows to parallelize a single
segment retrieval using graphics cards.

3.3. Operating Systems
The code has been widely tested under Linux machines and MacOSX™ systems. The installation
process in old operating systems is usually more complex so we suggest to always use the lastest
version of operating system. Ubuntu systems have shown the easiest installation process so we
recommend it for regular users.

For windows users some test under Microsoft Windows™ has been also performed successfully
using Cygwin, but we do not offer official support for this solution. Some manipulations are needed
depending on the specific version of Windows and Cygwin, so even if a solution is possible, it is not
straightforward and we do not recommend it. There is one exception: the last version of Microsoft
Windows 10™ offers the feature Windows Subsystem for Linux which allows the users to set up
an Ubuntu environment over Windows. This unestable but very promissing feature can really help to
install GRASP on Windows. You can start with this solution following this article of MSDN [https://
msdn.microsoft.com/commandline/wsl/about]. Once you have your Ubuntu environment configured,
you can follow this guide as a Linux user.

3.4. Access to GRASP Open repository
To access the code, the users have to register their account on GRASP Open web page. There are
different ways to download the code (direct download link, clone over HTTP...) but we recommend
to clone the code over GIT protocol. This method has the benefit of being manageable by the grasp-
manager (see Section 3.7.1, “GRASP Manager”) which is the easiest way to keep the code up-to-
date and manage GRASP extensions. The following steps show the process of getting access to the
repository and setting up your access via GIT protocol.

1. Go to GRASP-Open web page code section [https://www.grasp-open.com/products/]. And click in
the "GITLAB REPOSITORY" bottom.

2. Fill all the fields of the registration form (last section of that page), accept the conditions and press
SIGNUP button.

3. If the registration was successful, you will get a confirmation message. Click on the "Initialize
password" button.

4. The GitLab system, which is the system used to manage the code, will ask you for your email to
reset the password (initialize it). Introduce your email and click on the "Reset Password" button.

5. You'll receive an email for resetting the password. Follow the link in the email and set up your
new password.

20

https://msdn.microsoft.com/commandline/wsl/about
https://msdn.microsoft.com/commandline/wsl/about
https://msdn.microsoft.com/commandline/wsl/about
https://www.grasp-open.com/products/
https://www.grasp-open.com/products/

Installation

6. The next window will show the main page of the GitLab system. You can sign in using your email
and your password. Remember that you can access that web page at anytime, using the button
"GITLAB REPOSITORY" in GRASP-Open web page code section [https://www.grasp-open.com/
products/].

7. On the main page of the GitLab system you can see different repositories you can access. Go to the
GRASP repository or use this link [http://code.grasp-open.com/open/grasp]

8. There you can explore many things: you can see the code, see the changes, open an issue to get
in touch with the developer team ... To download the code, there are three alternatives: a) direct
download, b) cloning repository over http or c) cloning repository over git protocol. The last
solution is recommended so we'll continue explaining this process.

9. Set up your ssh-key in GitLab. It allows you to access the code via GIT protocol whitout a need
of typing passwords. To set up a ssh-key you have to go to you-profile>edit>ssh-keys section or
using this link [http://code.grasp-open.com/profile/keys].

10.Follow this guide [http://code.grasp-open.com/help/ssh/README] to create a ssh-key if you don't
have one. If you already have a ssh-key you can follow the same guide but skip the first steps of
a key creation, just copy it to the clipboard.

11.Paste your ssh-key in the GitLab system and click the button "Add key"

12.Now your system is properly configured and you can download the code over the git protocol. The
section Section 3.5.2, “Basic installation of GRASP” explains how to download the code, compile
and install it.

3.5. Building and installing GRASP
The GRASP software makes a heavy use of a number of libraries for data preparation and numerical
computations. As for the GRASP software itself, it relies on the following libraries FOSS [http://
en.wikipedia.org/wiki/Free_and_open-source_software] or belong to the public domain.

We are very focused on keeping the whole system free and depending only on non-commercial
libraries. That does not mean that non-open source software can't be linked to GRASP (certainly
closed-source, or even open-source, although restricted 1 solutions are sometimes better than the free
ones for certain purposes), but the system should always be able to run only with free, open-source
alternatives.

3.5.1. Dependencies
The following list shows the GRASP core dependencies. Some extensions can require extra
dependencies, in that case, please follow the documentation of the extension to know the installation
process.

• a C compiler (recommended gcc).

• a Fortran compiler (known to work with gfortran [http://gcc.gnu.org/wiki/GFortranBinaries] and
ifort).

• a make command (provided on any POSIX system).

• the cmake [http://www.cmake.org] building software.

• One of the four numerical packages:

• SuperLU [http://crd-legacy.lbl.gov/~xiaoye/SuperLU/]

• SuperLU_MT [http://crd-legacy.lbl.gov/~xiaoye/SuperLU/] (not included in the framework yet)

1 For the distinction between the free and open source movements, see http://www.gnu.org/philosophy/free-software-for-freedom.en.html.

21

https://www.grasp-open.com/products/
https://www.grasp-open.com/products/
https://www.grasp-open.com/products/
http://code.grasp-open.com/open/grasp
http://code.grasp-open.com/open/grasp
http://code.grasp-open.com/profile/keys
http://code.grasp-open.com/profile/keys
http://code.grasp-open.com/help/ssh/README
http://code.grasp-open.com/help/ssh/README
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://en.wikipedia.org/wiki/Free_and_open-source_software
http://gcc.gnu.org/wiki/GFortranBinaries
http://gcc.gnu.org/wiki/GFortranBinaries
http://www.cmake.org
http://www.cmake.org
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://www.gnu.org/philosophy/free-software-for-freedom.en.html

Installation

• MUMPS [http://graal.ens-lyon.fr/MUMPS/]

• ViennaCL [http://viennacl.sourceforge.net]

• a BLAS library (Netlib BLAS [http://www.netlib.org/blas/], ATLAS [http://
math-atlas.sourceforge.net], GotoBLAS [http://www.tacc.utexas.edu/tacc-projects/gotoblas2/]).
Actually, BLAS is not used directly by GRASP, but some numerical packages (SuperLU, MUMPS),
which GRASP relies on, are built on the BLAS. BLAS will be necessary only if you build GRASP
with these packages. Currently, Netlib BLAS is the default BLAS library for the GRASP but this
may change over time. The GRASP code has currently been tested with the Netlib, BLAS and
ATLAS.

• The LAPACK [http://www.netlib.org/lapack/] library. As for the ATLAS, LAPACK is only
necessary with the SuperLU and MUMPS packages, not with ViennaCL. Please note that ATLAS
ships with a partial LAPACK implementation for its own purposes, but that is not sufficient for the
numerical packages on which GRASP relies. You must install the full LAPACK package.

• ScaLAPACK [http://www.netlib.org/scalapack/] (a requirement for the SuperLU and MUMPS
numerical packages only).

• ParMETIS [http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview] (a requirement for the
MUMPS numerical package only).

• OpenMPI [http://www.open-mpi.org] (optional). This package is needed to work with the MUMPS.
The GRASP software can also be compiled using MPI by adding it the capability to process many
segments at the same time.

• The Gnome Library GLib [https://developer.gnome.org/glib/] (mostly used by the configuration
manager).

• The LibYAML [http://pyyaml.org/wiki/LibYAML] library (YAML is the chosen format for
GRASP configuration).

• The C Unit Testing Framework: CUnit [http://cunit.sourceforge.net].

These dependencies can be installed in an Ubuntu system with the following command:

All deps except superlu:
sudo apt-get install build-essential cmake git gfortran libyaml-dev libglib2.0-dev libcunit1-dev libsuperlu-dev

3.5.2. Basic installation of GRASP
Your system should be ready now for the installation. If it is not the case, please refer to the previous
section. Also, it is assumed that the user has access to the git repository, otherwise please check
Section 3.4, “Access to GRASP Open repository”.

The steps to download and install GRASP are the same for all platforms (Windows/Cygwin, MacOSX,
Linux). Depending on your system, you may or may not have the sudo command. It is used for running
a command with administrative rights. In that case, you can try without sudo (e.g. on Cygwin), or
use the su instead for logging as administrator. You can also perform a custom installation (see the
next section) so you don't need to be administrator. If none of this makes sense for you, ask your local
Unix guru.

$ git clone git@code.grasp-open.com:open/grasp.git
$ cd grasp
$ # you should now be in the master branch of the project
$ # (developers of the project may need to checkout the dev branch)
$ make # build the project using the default build settings
$ sudo make install # install grasp. Administrative privileges are needed.

22

http://graal.ens-lyon.fr/MUMPS/
http://graal.ens-lyon.fr/MUMPS/
http://viennacl.sourceforge.net
http://viennacl.sourceforge.net
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net
http://math-atlas.sourceforge.net
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
http://www.tacc.utexas.edu/tacc-projects/gotoblas2/
http://www.netlib.org/lapack/
http://www.netlib.org/lapack/
http://www.netlib.org/scalapack/
http://www.netlib.org/scalapack/
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/parmetis/overview
http://www.open-mpi.org
http://www.open-mpi.org
https://developer.gnome.org/glib/
https://developer.gnome.org/glib/
http://pyyaml.org/wiki/LibYAML
http://pyyaml.org/wiki/LibYAML
http://cunit.sourceforge.net
http://cunit.sourceforge.net

Installation

3.5.3. Advanced compilation
GRASP uses cmake system to compile the code. You can compile the code using CMAKE following
these steps:

$ # Place a terminal in GRASP root folder
$ mkdir build
$ cd build
$ cmake .. -DCMAKE_BUILD_TYPE=Release -DADDITIONAL_DEPENDENCIES_PATH=/usr/local/grasp-deps -DCONSTANTS_SET=generic
$ make -j12
$ sudo make install
$ grasp # test the command

You can use a different compilation configuration. All configuration options are defined in
Section 3.5.3.2, “Custom installation using cmake”

For users that are not familiar with cmake there is a Makefile which wraps cmake system and is placed
in root folder. This Makefile simplifies the use of cmake via make script. Internally, the Makefile
creates cmake structure and call it. Thanks to this operation, you can compile using this system like it
is defined in Section 3.5.2, “Basic installation of GRASP”. Addionally, this Makefile also allows you
to use some extra configuration parameters that are explained in Section 3.5.3.1, “Custom installation
using make”.

Finally, the last way to compile the code is via grasp-manager. Grasp-manager is described in the next
section: Section 3.7.1, “GRASP Manager”
.

3.5.3.1. Custom installation using make

If you have compiled the code following the rules explained in Section 3.5.2, “Basic installation of
GRASP”, you have compiled the code with default options. The options and their possible values are
listed below (the default value is written in italic):

• CONSTANTS_SET: generic or see Section 3.5.3.3, “Constants sets”

• BUILD: Release or Debug, RelWithDebInfo or Fast

• MPI: off or on

• DEBUG_MPI: off or on

• F90: gfortran or ifort

• PREFIX: /usr/local or other valid path where dependencies are available

• BUILD_DIR: build or other name but then build is ignored by git

• CC: cc or another valid c compiler

• CCX: c++ or another valid c++ compiler

For example:

$ make CONSTANTS_SET=polder MPI=on

3.5.3.2. Custom installation using cmake

By default, the resources and dependencies will be installed in the following directories:

23

Installation

/usr/local/share/grasp (resources that are internal databases or files used by GRASP)
/usr/local/grasp-deps (for general-purpose, utility libraries)

If one does not wish (or may not be able) to install GRASP under default system directories, it is
possible, and very easy to change these paths of installation with the PREFIX variable.

Please find below the way to install the project under your HOME directory instead of /usr/local
(now you don't need administrative rights anymore). In this case, we will use cmake compilation
system instead of the Makefile placed in the root folder, which wraps it.

$ cd ~/grasp/dependencies
$ sudo make PREFIX=$HOME/local install
$ #The command above builds and installs the third-parties dependencies under /home/your_name/local,
$ #instead of /usr/local
$ cd ..
$ mkdir build
$ cd build
$ cmake .. -DCMAKE_BUILD_TYPE=Release -DADDITIONAL_DEPENDENCIES_PATH=$HOME/local -DCONSTANTS_SET=generic
$ #The command above generates a Makefile with custom parameters
$ make -j12 # build the project
$ sudo make install # install grasp under $HOME/local/bin
$ $HOME/local/bin/grasp
$ # test the command (of course, it is then recommended to add $HOME/local/bin to your PATH)

Another possible customization is to change the numerical solver for GRASP. By default, it is set
to SUPERLU [http://crd-legacy.lbl.gov/~xiaoye/SuperLU/]. If you wish to try another solver 2, you
may use:

cmake SPARSE_SOLVER= your_chosen_solver

Table 3.1. SPARSE_SOLVER's valid values

SUPERLU (default)

SUPERLU_MT (not supported yet)

VIENNA_CL

MUMPS

You may also want to link the project to the BLAS implementation of your choice. This is possible
with:

cmake BLAS= your_chosen_blas_library

Table 3.2. BLAS valid values

netlib-blas (default)

atlas

The CONSTANTS_SET setting can be used for performing memory optimizations with a specific set
of data, e.g. cmake CONSTANTS_SET=polder. If one is not sure, one may stick to the default. See
Section 3.5.3.3, “Constants sets”

Table 3.3. Main CONSTANTS_SET values (installed by default)

generic (default)

valgrind

(you can install external constants set and use them)

The BUILD setting can be used to switch between debug (non optimized, with debug information),
dev (partially optimized) and prod (optimized) modes at build time, e.g. cmake BUILD=prod. The
default is dev.

2 That it is possible doesn't mean that it is recommended. In the current status of the project, GRASP has not been tested extensively with other
solvers than SuperLU and the support for other solvers is still quite sloppy.

24

http://crd-legacy.lbl.gov/~xiaoye/SuperLU/
http://crd-legacy.lbl.gov/~xiaoye/SuperLU/

Installation

Table 3.4. BUILD valid values

Debug

Release (default)

RelWithDebInfo

Fast

Of course, there is no limitation to the number of settings that the cmake command can accept:

cmake PREFIX=$HOME/local BUILD=prod SPARSE_SOLVER=SUPERLU
CONSTANTS_SET=generic

3.5.3.3. Constants sets

GRASP is a highly memory- and time-consuming software, which is strongly optimized. Usually
in software development, time can be optimized using more memory and memory can be saved
using more calculation time. In software development, there should be a balance between the time
consumption and the memory cost. GRASP has found this balance using many static arrays to optimize
time performance and defining the size of these arrays like constant values. This method permits to
choose during compilation time, the size of these arrays, allowing the user to optimize the software,
depending on the use. For example, GRASP will take more memory if it is compiled to use a
maximum of eight wavelengths instead of four. We have created some standard constants sets for
the most common uses and in general you can use "generic" CONSTANTS_SET as one valid to test
all instruments. If it is not valid you can check whether your application fits with another existing
constants set or create your own. Constants sets are managed by grasp-manager as an extension of
GRASP. It means that you can install an external definition of the constants set depending on your
necessities or create your own. Constants set are placed in src/retrieval/constants_set/
{CONSTANTS_SET_NAME} and consist of four files:

• mod_par_DLS.inc

• mod_par_OS.inc

• mod_par_DLS_bin.inc

• mod_par_inv.inc

Where {CONSTANTS_SET_NAME} is the name of the constants set, which also can be defined by
the user, for code compilation.

3.6. Running the code
Once the code is installed, you can test it right away. In the following examples, it is assumed that
the user has installed GRASP as a wide system executable. Otherwise, the GRASP binary is placed
in ./build/bin/grasp. When GRASP is executed without arguments, it prints some general
information about the version and how it was compiled:

$ grasp

GRASP core version: v0.7.0 (commit: c0bd56a ; branch_name: HEAD)
Compiled on 2016-06-02 10:21:03 +0200 commit of 2016-05-24 18:17:11 +0200
With C compiler: Apple LLVM version 7.3.0 (clang-703.0.31)
With FORTRAN compiler: GNU Fortran (Homebrew gcc 5.3.0 --with-all-languages) 5.3.0
Using generic constant set and build type Release
Maximum segment size: nx=2 ; ny=2 ; nt=30
Input drivers loaded: sdata
Input transformers loaded: none
Output segment functions loaded: ascii classic classic_plot none
Output tile functions loaded: ascii none
Output current functions loaded: none
Path to resources: /usr/local/share/grasp/

25

Installation

Sparse solver used: SuperLU
Build System: Darwin-15.5.0
Executable path: undefined absolute path (./build/bin/grasp_app)

usage: grasp [OPTIONS] {settings_file.yml}|help

OPTIONS:
-V use valgrind

In the examples folder there are some examples that the user can apply to verify that the whole system
is working properly. To run an example you have to call GRASP followed by the settings file as the
first argument:

$grasp examples/sunphotometer/settings_example_sunphotometer_inversion.yml

Config file read successfully

The tile is divided in segments with 1 rows, 1 cols and 1 times. 1 inversions will be performed (sequential version)

Retrieval #0 (1/1): 100.00%: 1 pixel will be processed

...

826.69409 1: 0.76332E+00 84.82804 % 2: 0.47585E+00 119.16735 % pixel # 1 Residual using INITIAL GUESS
277.77368 1: 0.29931E+00 30.63890 % 2: 0.33364E+00 30.73591 % pixel # 1 Residual after iteration # 1
22.29646 1: 0.71556E-01 5.62210 % 2: 0.21300E-01 2.00627 % pixel # 1 Residual after iteration # 2
8.99939 1: 0.19544E-01 1.39876 % 2: 0.86748E-02 1.84197 % pixel # 1 Residual after iteration # 3
1.26664 1: 0.34922E-02 1.21845 % 2: 0.25801E-03 0.03841 % pixel # 1 Residual after iteration # 4
0.91952 1: 0.27402E-02 0.83636 % 2: 0.34244E-03 0.05860 % pixel # 1 Residual after iteration # 5
0.49750 1: 0.27118E-02 0.39311 % 2: 0.28940E-03 0.09854 % pixel # 1 Residual after iteration # 6
0.49593 1: 0.22867E-02 0.25629 % 2: 0.41266E-03 0.10136 % pixel # 1 Residual after iteration # 7
0.37954 1: 0.83430E-03 0.12501 % 2: 0.34994E-03 0.03372 % pixel # 1 Residual after iteration # 8
0.19446 1: 0.67640E-03 0.09489 % 2: 0.16508E-03 0.04304 % pixel # 1 Residual after iteration # 9
0.11306 1: 0.59844E-03 0.07205 % 2: 0.84066E-04 0.02038 % pixel # 1 Residual after iteration # 10
0.11299 1: 0.58013E-03 0.07008 % 2: 0.85618E-04 0.01960 % pixel # 1 Residual after iteration # 11
Retrieval #0 (1/1): 100.00%: 1 pixels processed in 15.478408 seconds (cpu time: 15.433357).
Average per pixel: 15.478408 (cpu time: 15.433357)
Retrieval #0 (1/1): 100.00%: finished

...

Size Distribution dV/dlnr (normalized to 1) for 1 - fraction
0.50000E-01 0.18937E-03
0.65604E-01 0.25878E-01
0.86077E-01 0.31692E+00
0.11294E+00 0.46703E+00
0.14818E+00 0.49857E+00
0.19443E+00 0.31519E+00
0.25510E+00 0.13060E+00
0.33472E+00 0.37423E-01
0.43917E+00 0.15058E-01
0.57623E+00 0.21979E-01
0.75605E+00 0.60639E-01
0.99200E+00 0.12603E+00
0.13016E+01 0.20535E+00
0.17078E+01 0.31518E+00
0.22407E+01 0.32588E+00
0.29400E+01 0.32922E+00
0.38575E+01 0.22504E+00
0.50613E+01 0.15226E+00
0.66407E+01 0.84118E-01
0.87131E+01 0.25702E-01
0.11432E+02 0.33366E-02
0.15000E+02 0.15965E-03

...

Total Time: 1 pixels processed in 15.573089 seconds (cpu time: 15.515442).
Average per pixel: 15.573089 (cpu time: 15.515442)
Algorithm Time: 1 pixels processed in 15.478408 seconds (cpu time: 15.433357).
Average per pixel: 15.478408 (cpu time: 15.433357)
Control Unit Time: 1 pixels processed in 0.094681 seconds (cpu time: 0.082085).
Average per pixel: 0.094681 (cpu time: 0.139732)

First step of execution is to parse settings file and validate it. If everything is OK this line will
be printed, otherwise a list of errors will be produced. Please, pay attention to error messages
because they should help you to understand what is going on and how to resolve the problem.
This line informs you how the data are going to be organized for retrieval. Data are organized as
segments that will run inside the retrieval algorithm. Control unit will organize these segments
into a tile as a bigger group of pixels.
The first retrieval is launched and the retrieval algorithm starts to process the first segment (group
of pixels)
The retrieval can be in a verbose mode or not. If it is in a verbose mode, a detailed information
on the process will be printed. The most important information is in the next lines. The user can
follow the fitting process and see how the errors decrease iteration by iteration.

26

Installation

Finally, the results are processed. This example prints results on the screen. You can dump them
to a file in different formats such as CSV, HDF ... Output functions are extensions that you can
optionally install. In the settings file, it is defined which functions are used and how (set up).
The process is finished with a small summary about how many data have been processed and
how long it took.

It is also possible to add any number of arguments in the form of setting=value. They provide a
quick and easy way to override the default settings in the configuration file, for experimenting without
editing this file.

Table 3.5. Some common settings

Name Type Default Description

help boolean a false When set to true, displays an exhaustive list of settings with their
significance.

input.debug.print_clean_segment boolean false When set to true, prints a segment that has just been cleaned from
its non-significant data. (see also print_raw_segment)

input.debug.print_raw_segment boolean false When set to true, prints a segment that has just been loaded
from a driver (with possible non-significant data). (see also
print_clean_segment)

input.sdata.dump boolean false When set to true, displays the input measurements in the form of
a SDATA stream. Mostly useful for the maintainers of the scientific
subsystem.

input.sdata_driver.debug boolean false When set to true, displays the actions of the sdata driver when a
SDATA file is being read. This can be used for validating a new
SDATA file (the contents of this file will be displayed in a readable
form), and less commonly for debugging the SDATA driver.

retrieval.debug.print_segment_informationboolean false When set to true, prints a segment with data that are actually
passed to the retrieval library (unless there is a bug in the C/
Fortran interface, the data should be the same as those from
input.debug.print_clean_segment).

retrieval.debug.verbose boolean true When set to true, displays debugging information relative to the
retrieval subsystem. Mostly useful for the maintainers of the scientific
subsystem.

a Boolean variables (also known as logical in the FORTRAN community) can take the values true or false (that can also
be abbreviated as t and f)

3.6.1. Usage of GRASP: The configuration file
The default behaviour of the system is defined in a configuration file, whose settings can be overridden
by command line arguments, as described in the previous section. A configuration manager (also
known as the settings module) is responsible for loading the configuration file and for taking care of
the overriding mechanism for command line arguments, if necessary. It centralizes all the information
needed for a processing and in that matter drives the actual behaviour of the framework.

When there is more than a few parameters to change, or when one wishes to perform more persistent
corrections, it is easier to edit the configuration file than to set parameters in the command line.

The chosen format for new GRASP configuration files is YAML [http://en.wikipedia.org/wiki/
YAML], a standard format perfectly adapted for complex configurations such as the one needed by
the GRASP project. It provides support for simple values as well as for complex data structures,
while maintaining a high level of readability. YAML format is based on fixed indentation (the
spaces before an element define the level where it applies). The command line interface of GRASP
proposes an easy system to overwrite the main settings file with a "dot syntax", where each level of
indentation is replaced by a dot. For example, in GRASP, it is equivalent to be called with the argument
input.driver=sdata or to be defined in the settings file, as follow:

input:
 driver: sdata

GRASP settings system allows to import external files into one. Note that the standard YAML format
doesn't support file inclusion, but GRASP configuration files support this feature through the import
keyword that expects a list of files to be included. It is, therefore, possible to split large configuration

27

http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/YAML

Installation

files into smaller, easier to maintain independent files (this is especially important since several people
will have to maintain different sections of the configuration).

Figure 3.1. Excerpt of configuration file

import: []

input:
 driver: sdata_driver
 filename: bin/SDATA_NEW.dat

retrieval:
 # General retrieval parameters
 general:
 minimization_convention: logarithm
 threshold_for_stopping: 1.0e-5
 number_layers: 50
 shift_for_applying_logarithm_to_negative_values: 0.2
 binning_method: logarithm
 maximun_iterations_of_Levenberg-Marquardt: 15
 stop_before_performing_retrieval: false
 internal_file_path: "../retrieval/internal_files/"
 external_file_path: "../../home/"
 reference_plane_for_polarization: meridian
 regime_of_measures_fitting: absolute_polarization_components
 linearization_threshold: 0.03
 IMQ: 2
 use_internal_initial_guess: false
 threshold_for_length_corrections: -1.0e-2
 threshold_for_stopping_Q_iterations: 1.0e-2
 scale_for_finite_difference: 1.0e-3
 irradiance_corrected: false # or no or 0
 coeff_corr: 0.96
 regime_of_multipixel_constraints:
 inversion_regime: multi_pixel_followed_by_single_pixel
 time-scale: 100.01
 x-scale: 100.05
 y-scale: 100.05
 error_estimation: true
 number_of_characteristics_retrieved: 7
...
 noises:
 noise[1]:
 standard_deviation: 0.0
 error_type: absolute
 variation: 0.01
 measure_type[1]:
 type: I
 wavelength_involved: [1, 2, 3, 4, 5, 6]
 noise[2]:
 standard_deviation: 0.0
 error_type: absolute
...

The GRASP configuration file supports the file inclusion, with the import statement. The
included files must be given in a comma-separated list, this can remain empty.

28

Installation

The configuration is organized in sections. The structure is defined by the explicit indentation.
The order of the sections and the elements in the sections doesn't matter, as long as the structure
and indentation are respected.
Comments are supported: anything after a # sign is concidered as a comment.
Access to fields from the command line (for overriding a setting, say) is straightforward, using
the common dotted notation: for instance, the fully qualified name of number_layers is
retrieval.general.number_layers
Section and property tags can be indexed, with a simple bracket notation. A feature that is not
supported by the standard YAML format. This makes it easy to define arrays of complex data
structures.
Simple lists of data are supported (a standard feature of YAML). The number of elements can
be determined at runtime by the configuration manager.

All these qualities make the new configuration files very easy to read, maintain and extend.

3.7. Code repository and extensions
The GRASP code is managed by GIT. If you have a version that doesn't use GIT (for example, by
downloading it from a web server), we strongly recommend you to look for a version downloaded via
GIT (see Section 3.4, “Access to GRASP Open repository”). It will allow you to be connected to the
server to make updates of the code. Additionally, the GRASP code can be extended in different parts.
You can extend the input module or the output module. Extensions in input module are classified as
drivers and transformers. A driver is a module that is called to read input data. The most basic driver is
the SDATA driver which reads a SDATA file (Section 4.2.1, “The SDATA format”) but many other
drivers can be implemented to read raw databases and inject, without using intermediate text files, data
directly in the GRASP algorithm. A good example is to process satellite data, where the performance
is a keystone to be able to process this kind of huge archives. Satellite data is not transformed to sdata
format, instead of this, a specific driver is developed to connect raw satellite archive with GRASP.
Transformers are another type of input extensions which allow to modify input data after reading it. An
example of a transformer could be to load a climatology database to optimize input parameters. This
action can be shared between different drivers and it is called after loading data by a driver. Output
module can be extended with output functions. There are three types of output functions:

• segment output function: It will be called after processing each segment of a tile

• tile output function: It will be called after processing entire tile

• current output function: It will be called after processing each segment, but it receives a partial
tile as an argument. This function can print a tile with the current processed information

Each extension is distributed separately of the core code (except if an extension is considered as a
core, for example, sdata driver is essential). To install a new extension you can place the source code
in the specific place or you can use the grasp-manager, an extra tool which will help you to manage
the code and its extensions. It is described below (Section 3.7.1, “GRASP Manager”), and here we
will explain how to install manually an extension.

Extensions are the pieces of code that are detected and added during compilation. To install an
extension, you have to place the code inside the core repository in a proper place and compile again.
The corresponding places for each of the extensions are the following:

• For input

• drivers have to be placed in src/input/drivers

• transformers have to be placed in src/input/transformers

• For output

• segment functions have to be placed in src/output/segment_functions

29

Installation

• tile functions have to be placed in src/output/tile_functions

• current functions have to be placed in src/output/current_functions

• Kernels: They have to be placed in src/retrieval/internal_files

• Constants sets: They have to be placed in src/retrieval/src/constants_sets

The following diagram shows how the GRASP repository integrates extension repositories inside
itself.

Typing the command grasp without arguments, you will obtain information about how the software
was compiled including available extensions. To know more details about the extensions and write
one by your own, please go to technical documentation. [http://www.grasp-open.com/tech-doc]

Trick: Since the GRASP code files are tracked by GIT it is not recommended to modify them, except
if you want to develop something. If you want to place your tests and examples near the code, use a
folder called "home" (it is created during compilation but you can create it by yourself, if you wish).
This folder will not be tracked by GIT, allowing you to have your tests with the code without having
conflicts with GIT.

3.7.1. GRASP Manager
GRASP Manager is a script placed in the GRASP root folder which simplify (even more) the
update process. This script wraps Makefile system and adds a mechanism to work with GIT and the
multi-repository environment used by GRASP (see Section 3.7, “Code repository and extensions”).
Compilation of GRASP is always based on cmake. The make system wraps cmake, helping with the

30

http://www.grasp-open.com/tech-doc
http://www.grasp-open.com/tech-doc

Installation

creation of a necessary folder structure, and grasp-manager script wraps make system, helping with
the use of GIT, for users that don't feel comfortable using it. Also, it takes care of the extensions,
downloading and installing them in the correct places. GRASP Manager script is configured via
grasp-manager.yml file. Since it is a configuration file it is not tracked by GIT. Instead of this,
a template called grasp-manager.yml.dist is offerred by the system. If there is no grasp-
manager.yml file, it will be created as a copy of grasp-manager.yml.dist file, first time
you run grasp-manager script.

To know the list of actions offered by this script, you can just type ./grasp-manager.sh. A list of
available actions will be printed. In these sections we will explain the most interesting actions for the
users, but there are more actions that can be interesting if you are a developer. Please remember to
have a look at the technical documentation to know more about this script.

The basic actions for regular users are update-grasp and update-grasp-to-dev. They allow you to
update the code and the extensions to the newest version. With update-grasp you will get the last
stable version and with update-grasp-to-dev you will get the last unstable version (next code to
be released), which is not recommended to use except if you know what you are doing ;-). These
commands accept an argument that is called "environment". Environments are defined in grasp-
manager.yml and allow you to customize the way to compile the code and the list of extensions
that you want to have available. The documentation about how to write a configuration file for grasp-
manager is written in the file grasp-manager.yml.dist. Please check that file, to know all
available options. Note: Remember that in YAML format, lines that start by # symbol are comments.

When you run grasp-manager script, a backup of your code is created. This backup contains the
information about the previous GIT commit and unsaved changes in the code. Please take into account
that the repository has to be "clear" before performing any update actions, otherwise the changes will
be undone and saved in a backup. You can find these backups in the home/grasp-manager folder.
They are organized by time (when grasp-manager was executed) and you can apply them via rollback
(applies last backup) or apply actions.

Finally, the next code will show an example of the use of grasp manager:

$ # Following command will move the repository to dev branch using the environment defined
$ # as release in grasp-manager.yml
$ # It will install/uninstall extension in order to have exactly the extensions release environment specify
$./grasp-manager.sh checkout dev release
$ # Then, we can compile the code using the compilation settings defined in 'release' environment
$ # Since the release environment was the last used, it can be omitted.
$ # When the environment argument is omitted, we use the constants used
$ # in the last command, but we don't install/uninstall extensions (available extensions are already in use)
$./grasp-manager.sh make
$ # Finally we are going to install the code with the system in the last version.
$ # This is the most important action for regular users.
$ # A user of GRASP can regularly update the system via the following command:
$./grasp-manager.sh update-grasp

3.8. Known problems
Listed here, are common problems found during installations process.

• In MacOS system, some users receive fatal error: The remote end hung up unexpectedly; fatal: early
EOF; fatal: index-pack failed
It can be necessary to increase Git buffer size using the following command:git config --global
http.postBuffer 1048576000

31

Chapter 4. How to use GRASP

4.1. How to run the code
After the installation of GRASP software, the grasp command will be available. As it is explained
in a previous section (see Section 3.6, “Running the code”) just typing grasp will print some general
information about how the software was compiled.

First arguments that grasp executable expects is a path to the settings file. The settings file describes
the inversion strategy and general behaviour of the process: where is the input data, in which format
is the input data, where to store the output results... Therefore, a deep knowledge of the settings
parameters is the base to understand GRASP.

4.1.1. Settings file

Settings file is written in YAML [http://en.wikipedia.org/wiki/YAML] format and that brings many
benefits: easy to write, clear to read, self-explanatory names, flexible and powerful. The concepts are
organized in blocks that are translated to YAML thanks to the fixed indentation (we suggest 4 white-
spaces). So, for example, the first level defines the different modules:

input:
 # Here settings related with input module
 segment: # It defines a description of the input segment
 x: 2 # It defines the maximum size of x dimension of the segment to 2.
output:
 # Settings linked with the output
 # ...
retrieval:
 # Definition of inversion strategy
 # ...
...

When GRASP is called, the first step is to read settings and the second is to prepare the environment
for the settings defined in the main structures. If the settings are not valid, an explicit error message
will be printed. Please read the first line of it carefully to understand the error.

The settings parameters can also be defined by the command line. In this case, after the first argument
(settings file name), extra settings parameters can be defined with the syntax key=value where key
is the parameter name in "dot syntax". For example, in GRASP, it is equivalent to be called with the
argument input.driver=sdata or to have defined in the settings file the following content:

input:
 driver: sdata

It is important to define clearly how the relative paths have to be defined in the settings files. Relative
paths are always relative to the file that defines it. In the next section, the reader will learn about how
to include other settings file inside of a settings file, but this rule will stay valid: Relative paths are
defined from settings file that define it. In the case of usage of command line, relative paths are relative
to the current working directory. In the case of absolute paths, all this complexity disappears but the
results are less portables.

32

http://en.wikipedia.org/wiki/YAML
http://en.wikipedia.org/wiki/YAML

How to use GRASP

4.1.1.1. HELP argument

The list of available parameters for GRASP is long. The "help" argument will help you to know the
available parameters or to look for something specific. When help argument is present, GRASP is
not executed normally, but instead, the help information will appear in the screen print. Additionally,
help can be followed by a search string to filter the results. For example, help=input will print only
the settings which contain "input" string in its definition and help=input.segment will print only the
settings which will be under the block "segment" inside of the block "input" (because "dot" symbol
defines block separator).

Table 4.1. List of GRASP options

Field Name Field Content

help Shows this help information

version Shows GRASP code version information and stops

resources_path Path to framework resources folder

retrieval. general. path_to_internal_files Path to internal data files

retrieval. mode Define how the code is run. Valid values 'inversion' or 'forward' (inversion=full inversion; forward=only forward model)

retrieval. inversion. convergence.
minimization_convention

Minimization in absolute or logarithm space

retrieval. inversion. convergence.
threshold_for_stopping_Q_iterations

Threshold for stopping q - iterations: once the change in the residual smaller than this parameter the iterations are stopped

retrieval. inversion. convergence.
scale_for_finite_difference

Defines DL for calculations of derivatives: (f(x+DL)-f(x))/DL

retrieval. inversion. convergence.
threshold_for_stopping

Threshold for stopping p - iterations: once the change in the residual smaller than this parameter the iterations stops

retrieval. inversion. convergence.
normal_system_solver

Defines the method to solve normal system

retrieval. inversion. convergence.
maximum_iterations_of_Levenberg-
Marquardt

The maximum number of ip iterations where Levenberg-Marquardt correction is applied

retrieval. inversion. convergence.
maximum_iterations_for_stopping

Maximum number of iterations performed in the retrieval before stop

retrieval. inversion. convergence.
shift_for_applying_logarithm_to_negative_values

This value (usually 1) is added to negative parameters in order to be able to apply logarithmic transformations

retrieval. inversion.
regime_of_multipixel_constraints.
inversion_regime

Flag for single multi-pixel retrieval (VALUES)

retrieval. inversion.
regime_of_measurement_fitting.
polarization

1. -We fit: I, Q, U; 2. - We fit: I, Q/I, U/I; 3. - We fit: I, (Q^2+U^2)^(1/2) (Polarized measurements can be defined in input
data as Q and U or P); 4- We fit: I, [(Q^2+U^2)^(1/2)]/I (Polarized measurements can be defined in input data as Q and U
or P); 5- We fit: P/I (User has to provide P/I in input data)

retrieval. inversion.
regime_of_measurement_fitting.
scattering_angle_for_normalized_p11

For P11 retrieval. If P11 is given as absolute value, this option has to be -180. 0 (default value). If P11 is relative, indicate
with this option the value of the angle that has to be used to divide all p11 values.

retrieval. inversion. noises. noise[].
standard_deviation_synthetic

Standard deviation of synthetic random noise added to the corresponding inverted data, if value is 0 no synthetic random
noise is added

retrieval. inversion. noises. noise[].
error_type

Error type used for definition of covariance matrices used in measurement fitting and in modeling synthetic noise

retrieval. inversion. noises. noise[].
standard_deviation

Standard deviation of the random noise expected (this defines the covariance matrix used in fitting)

retrieval. inversion. noises. noise[].
measurement_type[]. type

Type of relevant measurements for applying the noise assumptions

retrieval. inversion. noises.
noise[]. measurement_type[].
index_of_wavelength_involved

List of indices of relevant wavelengths for applying the noise assumptions

retrieval. forward_model.
phase_matrix.
size_binning_method_for_triangle_bins

Determining the scale used for the binning of size distribution

retrieval. forward_model.
phase_matrix. number_of_elements

Number of phase matrix elements used in the calculations and retrieval

retrieval. forward_model.
phase_matrix. kernels_folder

Path to kernels when we retrieve size distribution for triangle bins or lognormal size distribution

retrieval. forward_model.
phase_matrix. radius. mode[]. bins

Number of triangle bins set for size distribution representation

retrieval. forward_model.
phase_matrix. radius. mode[]. min

Minimum value of the radius used in the triangle bins

retrieval. forward_model.
phase_matrix. radius. mode[]. max

Maximum value of the radius used in the triangle bins

retrieval. forward_model.
phase_matrix. ratio. mode[]. value

Values of bins using in retrieved aspect or axis distributions

33

How to use GRASP

Field Name Field Content

retrieval. forward_model.
radiative_transfer. number_of_layers

Maximum number of vertical layers resolved in radiative transfer (minimum and maximum value. If only one number is
assigned maximum is by default KNT-1)

retrieval. forward_model.
radiative_transfer.
molecular_profile_vertical_type

It defines which model will be used to describe vertical profile of molecular (Rayleigh) scattering. Values: 'Exponential'
describes molecular density profile at altitude h as exp(h/8)/8, 'Standard_atmosphere' uses standard atmosphere model
(pressure and temperature profiles) to calculate molecular density at each altitude.

retrieval. forward_model.
radiative_transfer.
aerosol_profile_vertical_type

It defines which model will be used to describe vertical profile of aerosol distribution. Values: 'Exponential' describes
aerosol concentration profile at altitude h as exp(h/HM)/HM, 'gaussian' uses normal distribution exp(h-HM)/
(sqrt(rpi)*sqrt(2.)*sigma) with sigma and HM parameter taken from parameters.

retrieval. forward_model.
radiative_transfer.
phase_matrix_truncation

Switch on/off the truncation: the technique to calculate scattering effects from the sharp forward peak of the phase function
separately from those of the rest of the phase function. It doesn't effect considerably the accuracy while provides much
faster calculations

retrieval. forward_model.
radiative_transfer.
absolute_error_rt_calculations

Absolute value of truncation threshold of Fourier and order-of-scattering series expansions in radiative transfer calculations

retrieval. forward_model.
radiative_transfer.
reference_plane_for_polarization

Reference plane for polarization calculations

retrieval. forward_model.
radiative_transfer. BOA_reflectance

Perform atmospheric correction calculation of surface reflectance and surface BRDF at the Bottom-Of-Atmosphere

retrieval. forward_model.
radiative_transfer. rt_kernels. mode

LUT Mode for radiative transfer (disable by default)

retrieval. forward_model.
radiative_transfer. rt_kernels. folder

Folder for aerosol look-up-table

retrieval. forward_model.
radiative_transfer.
simulating_observation.
order_of_scattering

Regime of scattering used for modeling diffuse radiation observations

retrieval. forward_model.
radiative_transfer.
simulating_observation.
number_of_gaussian_quadratures_for_expansion_coefficients

Number of Gaussian quadratures for calculating expansion coefficients used for multiple scattering simulations

retrieval. forward_model.
radiative_transfer.
simulating_observation.
number_of_guassian_quadratures_for_fourier_expansion_coefficients

Number of Gaussian quadratures for calculating Fourier expansion coefficients used for multiple scattering simulations

retrieval. forward_model.
radiative_transfer.
simulating_observation.
number_of_fourier_expansion_coefficients

Number of Fourier expansion coefficients used in multiple scattering simulations

retrieval. forward_model.
radiative_transfer.
simulating_derivatives.
order_of_scattering

Regime of scattering used in calculation of radiance derivatives

retrieval. forward_model.
radiative_transfer.
simulating_derivatives.
number_of_gaussian_quadratures_for_expansion_coefficients

Number of Gaussian quadratures for calculating expansion coefficients used in calculation of radiance derivatives

retrieval. forward_model.
radiative_transfer.
simulating_derivatives.
number_of_guassian_quadratures_for_fourier_expansion_coefficients

Number of Gaussian quadratures used for calculating Fourier expansion coefficients used in calculation of radiance
derivatives

retrieval. forward_model.
radiative_transfer.
simulating_derivatives.
number_of_fourier_expansion_coefficients

Number of Fourier expansion coefficients used in calculation of radiance derivatives

retrieval. product_configuration.
wavelength_indices_for_angstrom

Indices of wavelengths which will be used to calculate Angstrom exponent

retrieval. product_configuration.
aerosol_particulate_matter_diameter

Diameters of aerosol particles in microns which will be used to calculate Particulate Matter (PM)

retrieval. product_configuration.
wavelength_indices_for_ndvi

Indices of wavelengths which will be used to calculate NDVI if it is calculated

retrieval. product_configuration.
wavelenght_indices_for_aod_error_estimation

Indices of wavelengths which will be used to estimate aod error

retrieval. product_configuration.
wavelenght_indices_for_ssa_error_estimation

Indices of wavelengths which will be used to estimate ssa error

retrieval. product_configuration.
wavelenght_indices_for_lidar_error_estimation

Indices of wavelengths which will be used to estimate lidar error

retrieval. products. aerosol. chemistry Retrieve aerosol chemical composition (if retrieved)

retrieval. products. aerosol. lidar Retrieve columnar lidar ratios (e. g. , if lidar data are inverted)

retrieval. products. aerosol.
optical_properties

Provide aerosol optical properties

retrieval. products. aerosol.
phase_matrix

Obtain aerosol phase matrix

retrieval. products. aerosol.
refractive_index

Provide aerosol refractive index

retrieval. products. aerosol.
theoretical_bimodal_extinction

Provide estimated aerosol extinction for fine and coarse modes

34

How to use GRASP

Field Name Field Content

retrieval. products. aerosol.
theoretical_bimodal_parameters

Provide estimated aerosol microphysical characteristics for fine and coarse modes

retrieval. products. aerosol.
particulate_matter

Obtain aerosol particulate matter estimation at given particle diameters

retrieval. products. aerosol. type Obtain aerosol type index i. e. 0-Complex mixture,1-Background,2-Maritime,3-Urbn. Polluted,4-Mixed,5-Urbn. clean,6-
Smoke flam. ,7-Smoke. sold. ,8-Dust

retrieval. products. error_estimation.
aerosol. lidar

Implement error estimation for aerosol lidar products

retrieval. products. error_estimation.
aerosol. optical_properties

Implement error estimation for optical properties of aerosol products

retrieval. products. error_estimation.
parameters

Implement error estimation for retrieved parameters

retrieval. products. forcing.
broadband_flux

Provide upward and downward fluxes integrated over the solar spectrum at the user-defined levels for the scenarios with
and without aerosols

retrieval. products. forcing. forcing Provide aerosol radiative forcing values at the user-defined levels

retrieval. products. retrieval. fitting Provide obtained measurement fitting

retrieval. products. retrieval. parameters Provide retrieved parameters

retrieval. products. retrieval. residual Provide values of obtained residuals

retrieval. products. surface Provide surface reflectance products

retrieval. edges_size. x Size of edges width in pixels (it have to be lower than KIEDGE compilation constant)

retrieval. edges_size. y Size of edges height in pixels (it have to be lower than KIEDGE compilation constant)

retrieval. edges_size. t Size of temporal dimension of edges (it have to be lower than KIEDGE compilation constant)

retrieval. debug. verbose Retrieval prints progress information while it is performing the inversion

retrieval. debug. additional_information Print some additional information

retrieval. debug. simulated_sdata_file Filename where simulated observation data are to be printed. This option force retrieval. general.
stop_before_performing_retrieval=true

retrieval. debug. path_to_extra_files Path to folder with retrieval extra files: debug information, extra resources like image. dat files. . .

retrieval. debug.
use_internal_initial_guess

Test option which allows to load different initial guess for each pixel (loading them from image. dat files)

retrieval. constraints. characteristic[].
type

Type of characteristic

retrieval. constraints. characteristic[].
retrieved

Specify if this characteristic will be retrieved or only used in forward model

retrieval. constraints. characteristic[].
mode[]. initial_guess. value

Initial values for a specific (determined by type) characteristic

retrieval. constraints. characteristic[].
mode[]. initial_guess. min

Minimum value for the specific characteristic

retrieval. constraints. characteristic[].
mode[]. initial_guess. max

Maximum value for the specific characteristic

retrieval. constraints. characteristic[].
mode[]. initial_guess.
index_of_wavelength_involved

Indices of Wavelengths associated to the specific characteristic

retrieval. constraints. characteristic[].
mode[]. initial_guess. estimate_error

Flag to retrieve the error of specific parameter if retrieval. products. error_estimation. parameters is true

retrieval. constraints. characteristic[].
mode[]. single_pixel.
a_priori_estimates. lagrange_multiplier

Value of the Lagrange multiplier associated to a priori estimate of the retrieved characteristics (applied in each single pixel)

retrieval. constraints. characteristic[].
mode[]. single_pixel.
smoothness_constraints.
difference_order

Order of the derivatives/differences used for applying a priori smoothness constrains for the retrieved characteristics

retrieval. constraints. characteristic[].
mode[]. single_pixel.
smoothness_constraints.
lagrange_multiplier

Value of the Lagrange multiplayer used for applying a priori smoothness constraints for the retrieved characteristics

retrieval. constraints.
characteristic[]. mode[]. multi_pixel.
smoothness_constraints.
derivative_order_of_X_variability

Order of derivatives/differences used for applying a priori smoothness constraints on parameter inter-pixel X-variability in
multi-pixel retrieval regime

retrieval. constraints.
characteristic[]. mode[]. multi_pixel.
smoothness_constraints.
lagrange_multiplier_of_X_variability

Value of the Lagrange multiplier used for applying a priori smoothness constraints on parameter inter-pixel X-variability in
multi-pixel retrieval regime

retrieval. constraints.
characteristic[]. mode[]. multi_pixel.
smoothness_constraints.
derivative_order_of_Y_variability

Order of derivatives/differences used for applying a priori smoothness constraints on parameter inter-pixel Y-variability in
multi-pixel retrieval regime

retrieval. constraints.
characteristic[]. mode[]. multi_pixel.
smoothness_constraints.
lagrange_multiplier_of_Y_variability

Value of the Lagrange multiplier used for applying a priori smoothness constraints on parameter inter-pixel Y-variability in
multi-pixel retrieval regime

retrieval. constraints.
characteristic[]. mode[]. multi_pixel.

Order of derivatives/differences used for applying a priori smoothness constraints on parameter inter-pixel T-variability in
multi-pixel retrieval regime

35

How to use GRASP

Field Name Field Content

smoothness_constraints.
derivative_order_of_T_variability

retrieval. constraints.
characteristic[]. mode[]. multi_pixel.
smoothness_constraints.
lagrange_multiplier_of_T_variability

Value of the Lagrange multiplier used for applying a priori smoothness constraints on parameter inter-pixel T-variability in
multi-pixel retrieval regime

settings. debug Shows settings read to run this program

settings. strict Force GRASP to continue when there were parse or validation errors in the settings file

settings. dump Stream to dump read settings in short format(experimental)

settings. long_dump Stream to dump read settings in long format (experimental)

input. driver The driver that will be called for inverting data

input. file Name of file(s) which contain input observation

input. center. latitude Latitude of the center of tile to invert

input. center. longitude Latitude of the center of tile to invert

input. corner. row The number of the row for input driver in the native coordinate system of the sensor

input. corner. column The number of the column for input driver in the native coordinate system of the sensor

input. grid_offset. row Information of the first row in the input grid that will be use for normalizing the output. If 0 is used the output coordinate
reference will be the same than the input. This offset is for forcing the output row to start at 0 (e. g. if you put 1, output_row
== input_row - 1)

input. grid_offset. column Information of the first column in the input grid that will be used for normalizing the output. If 0 is used the output
coordinate reference will be the same than the input. This offset is for forcing the output column to start at 0 (e. g. if you put
1, output_column == input_column - 1)

input. area. width The width of the covered area in pixels. It has to be divisible by intput. segment. x value

input. area. height The height of the covered area in pixels. It has to be divisible by intput. segment. y value

input. time. from Initial date and time for data processing

input. time. to Final date and time for data processing

input. segment. x Size of segment width in pixels (it have to be lower than KIX compilation constant)

input. segment. y Size of segment height in pixels (it have to be lower than KIY compilation constant)

input. segment. t Size of segment temporal dimension (it have to be lower than KITIME compilation constant)

input. transformer Name of input data transformer functions to be used after load data

input. debug. raw_segment Stream to print raw segment data loaded

input. debug. clean_segment Stream to print segment information after clean NaN values

input. debug. used_files Stream to print names of the files that have the pixels for inverting

input. sdata. dump Stream where to dump sdata information

input. sdata. dump_original Stream where to dump sdata information just after being generated by the driver. Some transformers can modify sdata
information, this setting is thought for debugging purposes where the user is interested in knowing sdata generated by the
driver instead of data driving inside the inversion.

input. imagedat. dump Stream where to dump initial guess information (image. dat format)

input. preload_segment. x This parameter specifies how many segments in X dimension will be preloaded in each block

input. preload_segment. y This parameter specifies how many segments in Y dimension will be preloaded in each block

input. preload_segment. t This parameter specifies how many segments in T dimension will be preloaded in each block

input. driver_settings. sdata. debug Print debug information from sdata reader subsystem

input. transformer_settings.
segment_imagedat. file

File which contains initial guess information in classic input. dat format

output. segment. function Driver to process output for every single retrieval (show information in screen, perform a map, plotting, . . .)

output. segment. stream Stream to dump segment output data

output. iteration. function Driver to process output for every single retrieval (show information in screen, perform a map, plotting, . . .)

output. iteration. stream Stream to dump segment output data

output. tile. function Driver to process output after processing complete tile (show information in screen, perform a map, plotting, . . .)

output. tile. stream Stream to dump tile output data

output. current. function Driver to process output after each retrieval (show information in screen, perform a map, plotting, . . .)

output. current. stream Stream to dump current progress information about the retrieval conducted

output. sdata. simulated_file Stream where to dump sdata fitting information. Fitting product has to be enabled, otherwise this is ignored. Fitting is
dumped after retrieval process.

output. segment. function_settings. csv.
delimiter

Separator between fields

output. segment. function_settings. csv.
compression

If true output is compressed in GZ format (gz extension is automatically added)

output. segment. function_settings. csv.
show_timing

If true 'time per pixel' information is added in the output (default). Hide this information is useful to compare results with
diff command

output. tile. function_settings. csv.
chemical_concentration

Calculate and print chemical concentration

output. tile. function_settings. csv.
delimiter

Separator between fields

36

How to use GRASP

Field Name Field Content

output. tile. function_settings. csv.
compression

If true output is compressed in GZ format (gz extension is automatically added)

output. tile. function_settings. csv.
show_timing

If true 'time per pixel' information is added in the output (default). Hide this information is useful to compare results with
diff command

controller. segment_range This parameter allows specifying a range of segments that will be inverted/processed. If it is a single number a specific
retrieval will be processed. Use -1 as undefined. For example [15, -1] will process all retrievals starting by the segment #15

controller. debug. perform_retrieval Allowing controller to call retrieval. If this parameter is false the framework will work without inverting the data and it will
force to use only none output functions (results will not be printed). This parameter is useful for debug the framework or
prepare input data

controller. debug.
compilation_information

Print compilation information at the beginning of the process

controller. debug.
tracking_memory_stream

Stream where printing all information about memory allocated during the execution (debugging information)

controller. stream Stream to dump controller information

controller. mpi. maximum_job_time Maximum number of seconds that the master node will wait for a working node for obtaining results. After this time
(specified in seconds) if the job is not finished the controller will kill the task and the segment will be skipped

controller. mpi. polling_time Number of seconds that the master node wait after checking the workers

4.1.1.2. Extending settings: command line, import and template
statements

The first argument of GRASP has to be the settings file but this file can be modified by another
mechanism proposed by the settings module. The main way is by the command line, which allows to
replace every settings parameter with "dot" syntax (replacing indentation by "dot" symbol and colon
symbol by equal). All parameters that have been defined before and being replaced in the command
line will cause a "note" information during the execution of GRASP. That sentence is just to inform
the user that command line arguments always have higher priority than parameters in settings files.
The value from command line will be the value that will be used to run the code. The command line
is a very powerful feature to be used in the production scripts.

But the command line is not the only way to modify GRASP settings files. Settings files accept
"import" and "template" statement. These statements could look similar but theirs behaviour is a bit
different. Both of them allow defining other settings files that are read before the current one, but
in case of import, the settings can not be overwritten. The template statement allows loading other
settings files and then, modifying some settings to customize the loaded file. It is necessary to take
into account that these statements can be used in cascade, creating problems to debug the code. So
please use these statements carefully.

4.1.1.3. Streams

Some of the settings parameters are defined as "streams". GRASP output streams allow users to create
dynamic names avoiding overwriting files or having to change the filenames each time they execute
GRASP. When a description of a parameter is defined as "output stream", the user can set up a regular
output path, for example ./folder/file.extension or use the "magic" behind the output streams by using
a wildcard that will be replaced by dynamic values. For instance:

output:
 segment:
 function: hdf
 stream: "GRASP_Banizoumbou_20080101_20080331_2x2+3286+1376.hdf"
 tile:
 function: [ascii, hdf]
 stream: ["GRASP_Banizoumbou_20080101_20080331.txt",
 "GRASP_Banizoumbou_20080101_20080331.hdf"]

That definition is ok for many cases but if many tiles or segments are going to be processed, the
fixed names will produce name collisions (the content of some files will be overwritten during the
process). It would be tedious (and not always possible) for the user to change by himself the dates or
other numeric substrings in the file names. For this reason, the configuration system provides some

37

How to use GRASP

wildcards that will be automatically replaced with the given values depending on the state of the
processing. These wildcards are marked with curly braces and their names are quite self-explanatory.
The previous example can be rewritten in a more generic way using the stream wildcards:

output:
 segment:
 function: hdf
 stream: "GRASP_Banizoumbou_{tile_from(%Y%m%d)}_{tile_to(%Y%m%d)}_{segment_nx}x{segment_ny}//
 +{segment_corner_column(4)}+{segment_corner_row(4)}.hdf"
 tile:
 function: [ascii, hdf]
 stream: ["GRASP_Banizoumbou_{tile_from(%Y%m%d)}_{tile_to(%Y%m%d)}.txt",
 "GRASP_Banizoumbou_{tile_from(%Y%m%d)}_{tile_to(%Y%m%d)}.hdf"]

In addition, wildcards will provide the user the capability to set some system streams. If you use the
values "true", "screen", "t" or "1", the information will be printed in the terminal (stdout). If the stream
is set to "false", "none", "null", "f" or 0, nothing will be printed (like redirect to /dev/null). Finally,
using the value "stderr" or "-1", the output will be redirected to the standard error output.

The following list shows all available wildcards that can be used for creating dynamic output
filenames:

• auto(N): itime x icol x irow with N zeros at the left

• icol(N): current column number with N zeros at the left

• irow(N): current row number with N zeros at the left

• itime(N): current time number with N zeros at the left

• iinversion(N): current inversion id with N zeros at the left

• segment_nx(N): number of X elements per segment with N zeros at the left

• segment_ny(N): number of Y elements per segment with N zeros at the left

• segment_nt(N): number of T elements per segment with N zeros at the left

• tile_from(FORMAT): start tile date in FORMAT. By default FORMAT is %FT%H_%M_%SZ

• tile_to(FORMAT): final tile date in FORMAT. By default FORMAT is %FT%H_%M_%SZ

• tile_corner_column(N): number of the corner (column) of the segment defined in settings file.
Requirement: Input data have to be defined using input.corner instead of input.center

• tile_corner_row(N): number of the corner of (row) the segment defined in settings file.
Requirement: Input data have to be defined using input.corner instead of input.center

• tile_center_longitude(FORMAT): longitude of the center of the tile defined in settings file.
Requirement: Input data have to be defined using input.center instead of input.corner

• tile_center_latitude(FORMAT): latitude of the center of the tile defined in settings file.
Requirement: Input data have to be defined using input.center instead of input.corner

• tile_coordinate_x(I): x input reference of center of the tile defined in settings file. It can be defined
by corner or latitude. If is N in case it was defined by corner or 0.I in case it was defined like center

• tile_coordinate_y(I): y input reference of center of the tile defined in settings file. It can be defined
by corner or latitude. If is N in case it was defined by corner or 0.I in case it was defined like center

• tile_width(N): Number of X elements in tile with N zeros at the left

• tile_height(N): Number of Y elements in tile with N zeros at the left

• segment_corner_column(N): number of column of the segment corner with N zeros at the left.
Requirement: Input data have to be defined using input.corner instead of input.center

38

How to use GRASP

• segment_corner_row(N): number of row of the segment corner with N zeros at the left.
Requirement: Input data have to be defined using input.corner instead of input.center

• segment_first_date(FORMAT): date of first pixel inside the segment in FORMAT. By default
FORMAT is %FT%H_%M_%SZ

• segment_last_date(FORMAT): date of last pixel inside the segment in FORMAT. By default
FORMAT is %FT%H_%M_%SZ

• iteration(N): Number of iterations with N zeros at the left. (Note. In case of single pixel it returns
the number of iterations of first pixel)

• settings_filename: the name of settings file used to run the retrieval

• version: version of grasp if it is compiled with saving this information

• branch: git branch of grasp if it is compiled with saving this information

• commit: reference of git commit of grasp if it is compiled with saving this information

• constants_set: constants set used in compilation time

• pwd: this is replaced by current folder and it is only valid at the beginning of the stream definition

• yml: this is replaced by current folder of main configuration file and it is only valid at the beginning
of the stream definition

4.1.2. Retrieved characteristics
The ensemble of characteristics available to be retrieved or simulated by GRASP is open to user
selection in the settings file inside retrieval.constraints.characteristic section. An example of the
general structure of them is showed below:

retrieval:
 constraints:
 characteristic[1]:
 type: characteristic_name
 retrieved: true
 mode[1]:
 initial_guess:
 value: [0.0, 0.0, 0.0, 0.0, ...]
 min: [0.0, 0.0, 0.0, 0.0, ...]
 max: [0.0, 0.0, 0.0, 0.0, ...]
 index_of_wavelength_involved: [0.0, 0.0, 0.0, 0.0, ...]
 single_pixel:
 smoothness_constraints:
 difference_order: 0.0
 lagrange_multiplier: 0.0
 multi_pixel:
 smoothness_constraints:
 derivative_order_of_X_variability: 0.0
 lagrange_multiplier_of_X_variability: 0.0
 derivative_order_of_Y_variability: 0.0
 lagrange_multiplier_of_Y_variability: 0.0
 derivative_order_of_T_variability: 0.0
 lagrange_multiplier_of_T_variability: 0.0

 mode[2]:

 ...

 mode[3]:

 ...

 ...

39

How to use GRASP

The number assigned at each characteristic has no relevance at all while coherence is maintained. The
retrieved field can be set to 'true' if the corresponding characteristic is going to be a retrieved parameter
in the inversion; or to 'false' if it is just a fixed value for the forward simulation. The number of modes
included in each characteristic depends on the nature of each one. For characteristics representing
optical or mycrophisical aerosol properties (size distribution or refractive index for example), the
number of modes corresponds to the number of aerosol modes selected for the retrieval/simulation
(tipically one or two if fine/coarse distinction is made). For characteristics representing surface
properties three modes will be needed to describe the associated model; except for polarization that
only one is nedeed. The fields present in initial_guess part contain one element for each wavelength
following the structure provided in the SDATA file in the case of optical wavelength dependent
characteristics; one element for each bin for size distribution related characteristics; and one element
for other mycrophysical magnitudes or non-wavelength dependent optical characteristics. In the
former case, index_of_wavelength_involved should be filled with zeros for all the corresponding bins.
The rest of the elements included in single_pixel or multi_pixel parts are always formed by one single
element.

The list of available characteristics can be found below:

Table 4.2. Available GRASP characteristics

Characteristic Name Description

size_distribution_triangle_bins Normalized Size Distribution dV / dlnr at "triangle" bins

size_distribution_precalculated_lognormal Normalized Size Distribution dV / dlnr for precalculated lognormal bins

size_distribution_lognormal Parameters of bi - modal Lognormal Size Distribution dV / dlnr

aerosol_model_concentration Aerosol model concentration

real_part_of_refractive_index_spectral_dependent Spectral dependent Real part of complex refractive index

real_part_of_refractive_index_constant Complex Refractive Index Real part is spectrally constant

particle_component_volume_fractions_linear_mixture Real part of complex refractive index is mixture

particle_component_fractions_chemical_mixture Chemistry, fraction of: water, fslbl, finslbl, soot, iron

imaginary_part_of_refractive_index_spectral_dependent Spectral dependent Imaginary part of complex refractive index

imaginary_part_of_refractive_index_constant Complex Refractive Index Imaginary part is spectrally constant

sphere_fraction Fraction of spherical particles

aspect_ratio_distribution Axis Ratio Distribution

vertical_profile_parameter_height Scaling factor in case of exponential profile, mean height in case of gaussian distribution

vertical_profile_normalized Aerosol normalized vertical profile

aerosol_concentration Aerosol concentration

lidar_calibration_coefficient Calibration coefficient for lidar

vertical_profile_parameter_standard_deviation Standard deviation for aerosol vertical profile

surface_land_brdf_ross_li BRDF Land normalized parameters according to Ross and Li model

surface_land_brdf_rpv BRDF normalized parameters according to RPV model

surface_land_litvinov BRDF Land normalized parameters according to Litvinov model

surface_land_litvinov_fast BRDF Land normalized parameters according to Litvinov fast model

surface_land_polarized_maignan_breon BRDF Land normalized parameters according to Maignan and Breon model

surface_land_polarized_litvinov BPDF Land normalized parameters according to Litvinov model

surface_water_cox_munk_iso BRDF Water normalized parameters according to Cox and Munk model

surface_water_cox_munk_ani BRDF normalized parameters according to Maignan and Breon model

surface_water_litvinov BRDF Water normalized parameters according to Litvinov model

4.1.2.1. Initial guess through the algorithm

Understanding GRASP inversion procedure means understanding how the algorithm is starting from
an initial guess and obtains a results array. This is an iterative procedure explained in the literature
and introduced in Section 2.3, “GRASP Scientific Core algorithm”. The purpose of this section is to
explain how initial guess is represented inside the code as an array which evolves in each iteration
until getting the result array. The following diagram shows how initial guess is read from settings file
and translated into an internal array in the code. This detail could look very technical and related with
the development but understanding of some internal concepts of the code helps to understand how it
works. The following diagram shows this transformation:

40

How to use GRASP

Figure 4.1. Translation of settings file into initial guess array

Since the initial guess is defined in the settings, it is defined once for the entire segment (one should
remember that GRASP can work in a multi-pixel approach). Sometimes, it is desirable to have a
different initial guess for each pixel. In that case the already described mechanisms to establish the
initial guess are not enough, and GRASP proposes another useful tool to modify the initial guess of
each segment. This information is considered as part of the input because it contains pixel dependent
information and will be defined in detail in the Section 4.2.3, “Input information for characteristics”.

Once the initial guess is loaded, it is set as first array of characteristics to be retrieved. Retrieval process
iterates over it until it gets the results. The results of GRASP retrieval is the array with the same shape
as the initial guess, but containing the results of retrieval of these parameters to match them with
SDATA file. Then, the GRASP forward model is called using this results array, GRASP obtains the
rest of the derived results it provides. So, we can talk about two kinds of results: basic results and
derived products. The following diagram shows this process:

Figure 4.2. Evolution of retrieved characteristics during GRASP processing

To know all the details about the products obtained by GRASP, please see Section 4.3.1, “The list of
GRASP output parameters”.

41

How to use GRASP

4.1.3. Noise simulation
In order to harmonize all possibilities to add random noise to the measurements that are going to
be retrieved in GRASP a new setting called add_random_noise in the inversion.noises group has
been created. There are three possible values that this setting can take: disable, measurement_fitting
(default) and sdata. These options will produce a different effect depending on which retrieval mode
(forward or inversion) has been selected. Here it is a small description of the meaning of the options:

• disable: If this option is selected there is no addition of any noise even if
standard_deviation_synthetic greater than 0. All the rest of the settings related to it will be ignored.

• measurement_fitting: This is the default value and this option maintains the same behaviour of
GRASP random noise as before: for both forward and inversion retrieval modes random noise is
added to FS measurement vector to be fitted.

• If the forward option is selected in retrieval.mode any noise addition will be made.

• If inversion is selected, the noise is added in the FS vector and it is totally transparent to the
user. There is no possibility to see what are the noisy measurements that are really being used
in the retrieval. This option will always work no matter if the measurements in the sdata do
really correspond or not with the ones that are being inverted (this is especially referred to the
polarization measurements).

• sdata: the sdata mode is used to enable the user to see what are the noises added to the measurements.
This option will only work if the measurements in the sdata and the measurements that are really
retrieved are exactly the same. In other case, meaning that the code is fitting different measurements
than those in the input data, an error will arise and the code will not be executed.

• If the forward option is selected in retrieval.mode, the added noise will be done over the FS
vector. It will be seen in the column fit_X of the output file, or if output.sdata.dump setting is
present in the yml file.

• If inversion is selected, the noise will be added to the original sdata provided by the user
independently of the forward model configuration. The noise measurements will be available for
the user in the meas_X column of output file or via input.sdata.dump.

 mode: inversion

 inversion:
 regime: single_pixel

 convergence:
 minimization_convention: logarithm
 maximum_iterations_for_stopping: 35
 maximum_iterations_of_Levenberg-Marquardt: 35
 threshold_for_stopping: 1.0e-3
 threshold_for_stopping_Q_iterations: 1e-12
 scale_for_finite_difference: 1.0e-5
 normal_system_solver: sparse_matrix_solver

 measurement_fitting:
 polarization: degree_of_polarization

 noises:
 add_random_noise: measurement_fitting # | disable | sdata
 noise[1]:
 standard_deviation_synthetic: 0.1
 error_type: relative
 standard_deviation: 0.05
 measurement_type[1]:
 type: I
 index_of_wavelength_involved: [1, 2, 3, 4]
 noise[2]:

42

How to use GRASP

 standard_deviation_synthetic: 0.01
 error_type: absolute
 standard_deviation: 0.005
 measurement_type[1]:
 type: tod
 index_of_wavelength_involved: [1, 2, 3, 4]
...

4.2. Input module
The input module is responsible for reading the data and for setting the internal input data structures.
GRASP provides a very flexible way to inject the input data offering developers the capability to create
the input drivers. An input driver is an extension of GRASP that is added during compilation and is
selected in the settings file. These generic drivers allow the developers to create a custom way to read a
specific database and load it into the GRASP scientific algorithm. Therefore, GRASP can read infinite
kinds of input databases, as much as drivers exist. Additionally, drivers can take the responsibility of
performing some pre-processing actions (such as calibration corrections) before retrieving the data.
Finally, when GRASP is used for massive data processing, drivers are extremely important since they
help to prepare input data and load it into scientific module without the use of any intermediate files,
everything is performed in memory. For general use, GRASP proposes a generic driver called the
SData driver, which reads files in SData format (Sensor-Data format). These files are not standard, they
have a specific format proposed by GRASP to start working with the code. This format is described
in Section 4.2.1, “The SDATA format”.

Transformers are the second kind of extensions that the input module offers to users (and developers).
They are called after getting input data for a segment, it means after calling the driver. The purpose
of transformers is to add the capability to modify the segment after obtaining the data. An example
of transformation is to load a climatology database and to modify the initial guess of each pixel to
optimize the number of iterations needed to retrieve the data. Performing this action after getting
the data allows reusing it between different drivers. Default installation of GRASP does not offer
any transformers. All of them are considered as optional extensions and have to be externally added
manually or using the grasp-manager.

4.2.1. The SDATA format
The SDATA (sensor data) format is the original input data format of the GRASP code. It is a simple
text format designed by the science team at the early stages of the development of the scientific code
and it's the easiest way to create test data.

In the context of the GRASP project, the SDATA format has a number of pros:

• Designed by the scientific team at the origin of the GRASP project, it is well adapted to its needs.

• It is very simple to describe.

• It is a text format, and therefore portable, quite easy to check (for the accustomed eye!) and to edit
and to make some quick experiments.

• It is a piece of cake to read in Fortran :-)

It has also a number of cons:

• It is not standard (a by-product of the "not designed by a committee" approach). No off-the-shelf
library is available to parse it and validate it (meaning outside of the GRASP project).

• It lacks of flexibility: the order and the number of values are fixed for one version and any change
in the format to meet new requirements is likely to break the compatibility with the former versions.

• It is fragile: a malformed file may easily make the code crash or produce mysterious bugs. The
design of the format, while simple, makes it hard to develop a really reliable validator.

43

How to use GRASP

• Comments are expected only after values, on the same line (after a colon sign)

• While the format uses a text representation for the data, it contains lots of numeric values, with
limited accuracy and with no comment. Large files are tedious to read and it's easy to make shift
errors while reading and editing even for the experienced user.

• Being a text format, it becomes very inefficient for large data volumes. While it can be compressed
for archiving, it must be uncompressed for processing, and only sequential access is possible. It
is still possible to perform regional processings (several dozens of thousands of pixels that cover
more than a few hundreds of kilometres in both directions) with this format (it was actually done
for the sake of necessity), but it stresses the computing system a lot and can't be scaled up to the
global processing.

Whatever the number and seriousness of the cons, one of the design objectives is to keep the code
simple and flexible allowing the scientific community to play with the code. It does not make sense
to implement a driver for a single user who wants to do some tests with GRASP. That's why this easy
format is maintained by the developer team.

In the following description, the elements in fixed-width font are the snippets of content. The
numeric values in these snippets (e.g. in 2 2 2 : NX NY NT) are given only as examples.

Figure 4.3. An example of SDATA file

SDATA version 2.0
2 2 2 : NX NY NT

4 2008-01-04T13:15:00Z 70000.0 0 0 : NPIXELS TIMESTAMP HOBS_km NSURF IFGAS
1 1 1 3286 1377 2.599 13.528 252.0 100.0 6 0.443 0.490 0.565 ...
2 1 1 3287 1377 2.657 13.528 242.0 100.0 6 0.443 0.490 0.565 ...
1 2 1 3286 1376 2.601 13.583 241.0 100.0 6 0.443 0.490 0.565 ...
2 2 1 3287 1376 2.658 13.583 239.0 100.0 6 0.443 0.490 0.565 ...

4 2008-01-06T13:02:41Z 70000.0 0 0 : NPIXELS TIMESTAMP HOBS_km NSURF IFGAS
1 1 1 3286 1377 2.599 13.528 252.0 100.0 6 0.443 0.490 0.565 ...
2 1 1 3287 1377 2.657 13.528 242.0 100.0 6 0.443 0.490 0.565 ...
1 2 1 3286 1376 2.601 13.583 241.0 100.0 6 0.443 0.490 0.565 ...
2 2 1 3287 1376 2.658 13.583 239.0 100.0 6 0.443 0.490 0.565 ...

SDATA files have a simple structure:

1. The first line is the FILE HEADER. It contains a magic identifier SDATA followed by a version
number.

2. The second line is the SEGMENT HEADER. It contains three numbers, NX, NY and NT, the spatial
and temporal dimensions of the segment that this SDATA file represents. You can notice a colon
and names of fields after the values. This is the way how comments are written in the SDATA files.
Everything starting from the colon will be ignored by the SDATA parser.

3. An empty line follows the SEGMENT HEADER.

4. Then comes the first CELL (group of neighbouring pixels) of the SEGMENT. Each CELL has
at most NX*NY pixels (but it may have less, for various reasons: cloudy pixels that have been
filtered, missing pixels, etc.). The number of CELLs in the SEGMENT is given by the NT number
provided in the SEGMENT HEADER.

Table 4.3. The SDATA main structure

Field Name Field Content

FILE HEADER SDATA version 2.0

44

How to use GRASP

Field Name Field Content

SEGMENT HEADER 2 2 2 : NX NY NT

empty line

CELL 1 cell content, look for CELL structure

empty line

CELL 2 cell content, look for CELL structure

empty line

...

CELL it cell content, look for CELL structure

empty line

...

CELL NT cell content, look for CELL structure

empty line

A CELL is a set of neighbouring pixels, that form the base of a SEGMENT. Each CELL has a
HEADER and a number of PIXELs, supposedly acquired at the same time.

The CELL HEADER contains:

1. The number of pixels in the CELL (NPIXELS). It may not be larger than NX*NY

2. The timestamp of acquisition of the pixels, in the ISO8601 [http://en.wikipedia.org/wiki/
ISO_8601] time format.

3. A "height" of observation, in metres. The value here is a bit weird (70000), and doesn't correspond
to the satellite altitude (that is at least 10 times larger). Actually, the value doesn't really matter as
long as it is large. Historically, the scientific team has used this value of 70000 in many SDATA
files.

4. Two values for the number of surface and gas parameters. These two values are currently not
documented and can be set to 0 for the moment.

5. Comments starting with a colon.

Table 4.4. The CELL structure

Field Name Field Content

CELL HEADER 4 2008-01-04T13:15:00Z 70000.0 0 0 : NPIXELS ...

 ... TIMESTAMP HOBS NSURF IFGAS

PIXEL 1 a line of values, look for PIXEL structure

PIXEL 2 a line of values, look for PIXEL structure

...

PIXEL NPIXELS a line of values, look for PIXEL structure

Each line of data after the CELL HEADER represents exactly one pixel, with all its fields. The
Table 4.5, “The PIXEL structure” describes the order and type of these fields. For the types, the Fortran
notation is used: array types are described with the dimensions of arrays between parentheses, and the
ordering is such that the first index increases faster. Indices start from 1, not from 0 like in C. For
instance, when one reads real(nwl) for wavelengths, that means that one has to read a list of nwl
real values that represent wavelengths.

Table 4.5. The PIXEL structure

Field Type Variable Name (in source code) Field Content

integer pixel[ipix].ix coordinate x in the current cell, starting at 1 (in the direction EW)

integer pixel[ipix].iy coordinate y in the current cell, starting at 1 (in the direction NS)

integer pixel[ipix].icloudy cloud flag: 0 = cloud, 1 = clear a

integer pixel[ipix].icol column of the pixel in its original grid or database (can be set to 0 when not relevant)b

integer pixel[ipix].irow line of the pixel in its original grid or database (can be set to 0 when not relevant)b

45

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

How to use GRASP

Field Type Variable Name (in source code) Field Content

real pixel[ipix].x longitude of the pixel, in decimal degrees, in the range [-180..180]

0: Greenwich meridian, east of Greenwich: positive, west of Greenwich: negative

real pixel[ipix].y latitude of the pixel, in decimal degrees, in the range [-90..90]

real pixel[ipix].MASL altitude of the ground, in metres (MASL: metres above sea level)

real pixel[ipix].land_percent percentage of land, in the range [0 (sea) .. 100 (land)]. Intermediate values correspond to
coastal pixels

integer pixel[ipix].nwl number of available wavelengths (nwl)

real(nwl) pixel[ipix].meas[nwl].wl list of wavelengths, in micrometers

integer(nwl) pixel[ipix].meas[nwl].nip number of types of measurements for each wavelength (nip)

integer(nip, nwl) pixel[ipix].meas[nwl].meas_type[nip] list of types of measurements meas_type (see Table 4.6, “Types of measurements”)

The ordering is as follows: meas_type(1, wl1) meas_type(2, wl1) ...
meas_type(nip, wl1) meas_type(1, wl2) ... meas_type(nip, wln)

integer(nip, nwl) pixel[ipix].meas[nwl].nbvm[nip] number of valid measurements (nbvm), for each type of measurement and for each
wavelength

The ordering is as follows: nbvm(1, wl1) nbvm(2, wl1) ... nbvm(nip, wl1) nbvm(1,
wl2) ... meas_type(nip, wln)

real(nwl) pixel[ipix].meas[nwl].sza solar/sounding zenith angle (sza or θs) in decimal degrees ([0..90]), for each wavelength

real(nbvm, nip,
nwl)

pixel[ipix].meas[nwl].thetav[nip][nbvm] viewing zenith angle (vza or θv) in decimal degrees ([0..90] for PARASOL, TBD for
PHOTOMETERS)

The ordering is as follows: θv(1, 1, wl1) vza(2, 1, wl1) ... θv(nbvm, 1, wl1) θv(1, 2, wl1) ...

θv(nbvm, nip, wln)

In case of lidar or vertical observations this field contains altitudes or ranges of the
observations in meters.

real(nbvm, nip,
nwl)

pixel[ipix].meas[nwl].phi[nip][nbvm] relative azimuth angle (raa or ∆ϕ) in decimal degrees ([-180..180] or [0..360])

The ordering is as follows: ∆ϕ(1, 1, wl1) ∆ϕ(2, 1, wl1) ... ∆ϕ(nbvm, 1, wl1) ∆ϕ(1, 2,
wl1) ... ∆ϕ(nbvm, nip, wln)

real(nbvm, nip,
nwl)

pixel[ipix].meas[nwl]

.tau[nbvm];...;.P[nbvm]

measurements (depending on meas_type), for each wavelength

The ordering is as follows: meas(1, 1, wl1) meas(2, 1, wl1) ... meas(nbvm, 1, wl1)
meas(1, 2, wl1) ... meas(nbvm, nip, wln)

Where meas can be: tau ... P

real(nsurf, nwl) pixel[ipix].meas[nwl].groundpar[nsurf] ground parameters

This part can be ignored for now. The ordering is as follows: groundpar(1, wl1)
groundpar(2, wl1) ... groundpar(nsurf, wl1) groundpar(1, wl2) ...
groundpar(nsurf, wln)

real(nwl) pixel[ipix].meas[nwl].gaspar gas absorption (tau gases) or molecular depolarization ratio. This parameter has to be
provided only if the setting IFGAS (in the CELL HEADER) is set to 1.

The ordering is as follows: gaspar(wl1) gaspar(wl2) ... gaspar(wln)

integer(nip, nwl) pixel[ipix].meas[nwl].ifcov[nip] ifcov (1 if a covariance matrix is available, 0 otherwise)

The ordering is as follows: ifcov(1, wl1) ifcov(2, wl1) ... ifcov(nip, wl1) ifcov(1,
wl2) ... ifcov(nip, wln)

real(nbvm, nip,
nwl)

pixel[ipix].meas[nwl].cmtrx[nip][nbvm] cmtrx (diagonal of covariance matrix, also known as Ω). These values have to be skipped if
ifcov=0

The ordering is as follows: cmtrx(1, 1, wl1) cmtrx(2, 1, wl1) ... cmtrx(nbvmc, 1, wl1)
cmtrx(1, 2, wl2) ... cmtrx(nbvmc, nip, wln)

integer(nip, nwl) pixel[ipix].meas[nwl].ifmp[nip] ifmp (1 if a vertical profile (mprof) is available, 0 otherwise)

The ordering is as follows: ifmp(1, wl1) ifmp(2, wl1) ... ifmp(nip, wl1) ifmp(1,
wl2) ... ifmp(nip, wln)

real(nbvm, nip,
nwl)

pixel[ipix].meas[nwl].mprof[nip][nbvm] mprof (vertical profile of Rayleigh backscattering). These values have to be skipped if
ifmp=0

The ordering is as follows: mprof(1, 1, wl1) mprof(2, 1, wl1) ... mprof(nbvmd, 1, wl1)
mprof(1, 2, wl2) ... mprof(nbvmd, nip, wln)

a This fairly counter-intuitive coding has a reason: the cloud flag was at first intended to be a general processing flag (0 =
pixel not to be processed, 1 = to be processed), cloud contamination is only one particular case. Now the flag is limited to
cloud screening, but unfortunately the coding couldn't be changed right away. Since the framework is still in development, it
is planned to correct this unnatural feature in the near future.
b These fields are actually not used by the processing and therefore the SDATA implementer is free to put whatever he or she
likes here (e.g. 0 for non-gridded data). They are intended mainly for documentation and debugging. For satellite data, they
make it possible to retrieve the pixel original information in the original database.
c nbvm is actually to be multiplied by ifcov(ip, iwl). If this last number equals 0, the array reduces to an empty set and
no value is to be read.
d nbvm is actually to be multiplied by ifmp(ip, iwl). If this last number equals 0, the array reduces to an empty set and
no value is to be read.

The field pixel[ipix].meas[nwl].meas_type[nip] of pixel structure is a special code which defines
the type of measure. The following table describes the valid codes and their interpretation:

46

How to use GRASP

Table 4.6. Types of measurements

Constant Name (used in source code) Value (SDATA 2.0) Meaning

MEAS_TYPE_UNKNOWN 0 The measurement type is invalid or not
yet implemented

MEAS_TYPE_TOD 11 Total Optical Depth

MEAS_TYPE_AOD 12 Aerosol Optical Depth

MEAS_TYPE_ABS 13 Aerosol absorption optical depth

MEAS_TYPE_P11 21 Phase Matrix Element P11

MEAS_TYPE_P12 22 Phase Matrix Element P12

MEAS_TYPE_P22 23 Phase Matrix Element P22

MEAS_TYPE_P33 24 Phase Matrix Element P33

MEAS_TYPE_P34 25 Phase Matrix Element P34

MEAS_TYPE_P44 26 Phase Matrix Element P44

MEAS_TYPE_P11_rel_ang 27 p11/p11(given_angle) phase matrix
element

MEAS_TYPE_P12_rel 28 -p12/p11 phase matrix element

MEAS_TYPE_LS 31 Lidar Signal

MEAS_TYPE_RL 32 Raman Lidar Signal

MEAS_TYPE_DP 35 Volume Depolarization Ratio

MEAS_TYPE_VEXT 36 Vertical Extinction profile

MEAS_TYPE_VBS 39 Vertical Backscatter profile

MEAS_TYPE_I 41 Normalized Radiance I a

MEAS_TYPE_Q 42 Polarized radiance Qa

MEAS_TYPE_U 43 Polarized Radiance Ua

MEAS_TYPE_P 44 Polarization Rate: P = sqrt(Q*Q +
U*U)/I

MEAS_TYPE_P 44 Polarization Rate: P = sqrt(Q*Q +
U*U)

MEAS_TYPE_I_rel_sum 45 Relative Stokes parameter I/
sum(I(1:NBVM)), where NBVM is the
total number of provided angles

MEAS_TYPE_P_rel 46 Linear polarization sqrt(Q*Q+U*U)/I

a All the Stokes Parameters are to be expressed as reduced quantities, without dimension

Equation 4.1. Conversion from absolute radiances to normalized, reduced
radiances

I = radiance * π / E0

where radiance is the radiance of the instrument, and E0 the solar spectral flux, that may be both in mW / (m^2 * sr * nm)
or equivalent units

4.2.2. Angle definition

This chapter main goal is to describe how the angles should be defined to be used inside of GRASP
code. The universal spirit of GRASP, where many different instruments coexist (from satellite to
ground based measurements), creates challenges to define a homogeneous way of defining the angles,
keeping a unique geometry. As it is shown in the figure Figure 4.4, “Definition of GRASP geometry”
GRASP angles are defined to be considered as "normal" for satellite reference.

47

How to use GRASP

Figure 4.4. Definition of GRASP geometry

Since GRASP angles are defined using a satellite reference, it provokes some problems to define what
we could call as an intuitive "ground based" reference system. That is why we are going to put special
emphasis on the definition of the angles to these less intuitive applications. The intuitive reference for
"ground based" measurements, in spherical geometry, is given as follows:

• θgb zenith angle: with the zero established in the zenith

• ϕgb azimuth angle: with the zero considered in the sun position

where the sub index "gb" makes reference to "ground based".

The conversion to the GRASP geometry is done as follows:

Equation 4.2. Conversion from θgb (ground based) to θG (GRASP)

θG = 180° - θgb

Equation 4.3. Conversion from ϕgb (ground based) to ϕG (GRASP)

ϕG = 180° + ϕgb

Here we propose some examples for better understanding of the process. Before defining the
measurement angles introduced in the code, both "intuitive" and "GRASP", we need first to consider
the instrument viewing angle for each scenario (θv, ϕv). The following figure and table will provide
some examples of angles defined for the ground based applications.

48

How to use GRASP

Figure 4.5. Ground based angles definition example

Table 4.7. Specific examples in ground based angle definition example

Example θs θv ϕv θgb ϕgb θG ϕG

1 25° 0° 0° 25° 0° 155° 180°

2 25° 12.5° 0° 12.5° 0° 167.5° 180°

3 25° 25° 0° 0° 0° 180° 180°

4 25° 37.5° 0° 12.5° 180° 167.5° 0°

5 25° 50° 0° 25° 180° 155° 0°

6 25° 90° 0° 65° 180° 115° 0°

7 25° 0° 30° 25° 30° 155° 210°

8 25° 0° 90° 25° 90° 155° 270°

Since sunphptometers are widely used with GRASP, the following table provides information
specifically about these instruments, considering the instrument viewing angle for each scenario (θv,

ϕv). They can be understood as the "movements of the motors". The process will be as follow:

instrument viewing angle -> angle in (intuitive) ground based -> angle in GRASP

Table 4.8. Sunphotometer angle description

Measure type Angle Inst. View. Range Gr. Based Range GRASP Range

θ θv = 0° [0°] θgb = θs [0° -- 90°]a
θG = 180° - θs [180° -- 90°]a

Direct sun
ϕ ϕv = 0° [0°] ϕgb = 0° [0°] ϕG = 180° [180°]

θ θv = 0° [0°] θgb = θs [θs] θG = 180° - θs [180° -- θs]

Almucantar ϕ ϕv = 3°, 3.5°, 4°,
5°, ..., 90°, ... 180°

[0° - 180°] ϕgb = 3°, 3.5°, 4°,
5°, ..., 90°, ... 180°

[0° -- 180°] ϕG = 183°, 183.5°,
184°, 185°, ...
270°, ... 360°

[180° -- 360°]

θ θv = -6°, ... , -3°,
3°, θ

max < θs

[-6° -- (θ
max < θs)] θgb = θs + 6° ...

θs + 3°, θs - 3°, ...

θs - 6°, θs - θ
max

[(θs + 6°) -- 0]bc
θG = 180° - θs
- 6°, ... 180° -

θs - 3°, 180°
- θs + 3°, ...

180° - θs + θ
max

[(180° - θs -
6°) -- 180°]

Principal plane
measurement:

Before the zenith

ϕ ϕv = 0° [0°] ϕgb = 0° [0°] ϕG = 180° [180°]

49

How to use GRASP

Measure type Angle Inst. View. Range Gr. Based Range GRASP Range

θ θv = θ
min < θs

, ... 140° or

θ
max - θs > 90°

[(θ
min <

θs) -- 140°]
θgb = θ

min -

θs ... 140° -

θs or θ
max - θs

[0° -- 90°]bc
θG = 180° + θs
- θ

min, ... 180°
+ θs - 140° or

180° + θs - θ
max

[180° -- 90°]bc

Principal plane
measurement:

After the zenith

ϕ ϕv = 0° [180°] ϕgb = 180° [180°] ϕG = 0° [0°]

θ θgb = 85°, 80°,
75°, ... 10°, 5°, 0°

 θG = 95°, 100°,
105°, ... 170°,

175°, 180°

 Polarized
principal plane
measurement:

before the zenithd

ϕ ϕgb = 0° ϕG = 180°

θ θgb = 0°,
5°, 10°, ...

75°, 80°, 85°

 θG = 180°,
175°, 170°, ...

105°, 100°, 95°

 Polarized
principal plane
measurement:

after the zenithd

ϕ ϕgb = 180° ϕG = 0°

a θs refers to the solar zenith angle (for different measurements)
b decreasing values
c decreasing values
d The data of the polarized principal plane correspond always to fixed points in the sky and it is given for the instrument in
so-called ground based coordinates.

In the case of nephelometer data angle definition, it is a bit different since only θ angle has to be
defined, the rest of the angles will be ignored. To provide nephelometer data (phase matrix), the
conversion to the GRASP geometry is done as follows:

Equation 4.4. Conversion from θn (nephelometer scattering angle) to θG
(GRASP)

θG = 180° - θn

4.2.3. Input information for characteristics
While in many cases the input data is just represented by SDATA information, sometimes it is
necessary to provide extra information for each pixel. The way to inject extra information to the
algorithm is to do it through the initial guess. Sometimes, this is just because the user wants to provide
different initial guesses for each pixel, or sometimes it is just input information. In the first case, this
can be easily done by the imagedat files that will be described below. On the other hand, when a
charactacteristic is defined as “retrieved=false”, it is taken as input information.

The “segment_imagedat” tool enables the user to provide an ASCII file containing the complete set
of initial guesses for all the pixels. Following illustration is an example of how the imagedat files
looks like:

Figure 4.6. Example of a possible use of imagedat

50

How to use GRASP

The columns in this ASCII file correspond to the pixels, and each row is associated with a different
characteristic. The first column is just the enumeration of characteristics starting by 1. The total number
of both columns and rows has to be consistent with the input file. The value “-999” can be assigned
to the initial guesses which the user does not need to modify, in this case the value defined in the
characteristics section of the settings file will be taken by default. This mechanism provides a very
versatile tool to inject pixel-dependent data to the retrieval code, for adjusting the initial guess or just
for providing external input information from climatologies, models, etc.

4.2.4. How to prepare the photometer data
Sunphotometers are widely used with GRASP. They take measurements of sky radiance and direct
sun. Many inversion strategies can be used to retrieve sunphotometer data, but this section will explain
how to define input data. The information that runs inside of GRASP has to be pre-processed in order
to screen clouds, calibrate and normalize the data.

Following Section 4.2.1, “The SDATA format”, the direct sun measurements can be described as
AOD or TOD defined in Table 4.6, “Types of measurements” as measurements of type 11 or 12. At
this point it is needed to take into account that if "ifgas" field is defined as 1 in the case of AOD, no
gaseous absorption optical depth will be accounted, but in the case of TOD they will be subtracted.
The gases also affect the radiance measurements but in lower magnitude. In the case of TOD +
radiances with ifgas=1, the same model will be applied to all measurements. If AOD is used, some
(minor) incongruences could come from the use of different models to calculate gases for AOD and
for radiances.

Radiance measurements are defined with the constant MEAS_TYPE_I(41). Polarized measurements
can be defined as Q,U (42, 43) or as polarization rate (44). It is also important to check how polarized
data is going to be manipulated in the retrieval code based on inversion strategy defined in the settings
file.

4.2.5. How to prepare the lidar data
Note that all processing will be considering range corrected profile for one wavelength. The procedure
for other profiles from different wavelengths are exactly the same. Range corrected profile implies that
at least the background noise was subtracted and altitude corrections were applied to the raw signal,
but if it's possible to consider all other corrections (electrical noise and overlap correction, dead time
correction, gluing analog and photon-counting signals and all others that your system may have), you
should apply them.

Step 1. Background noise subtraction and range correction.

Let B' be the estimation of the background noise. Usually B' is estimated as P(ZB), accumulated and
averaged around selected altitude ZBZ, much higher than the maximum altitude of lidar extraction
in step 2 (Zmax). For example with maximum altitude Zmax=15km, it is averaged around 30 km and
accumulated for the whole period of lidar observation. The noise and range corrected signal will be:

S(Zi) = (P(Zi)-B')*Zi
2

Step 2. Altitude range selection and signal cropping.

The minimum Zmin and maximum Zmax altitudes are selected and the signal is cropped, so
Zmin<Zi<Zmax. The minimum altitude should be selected as low as possible, preferably in the
region where the overlap correction could be correctly applied. The Zmax should be selected from
the following considerations: maximum altitude where the noise levels of lidar measurement are
acceptable and the amount of atmospheric aerosols is still noticeable.

In case if the lidar used is inclined The sounding zenith angle should be provided for the corresponding
wavelenghts. The angle value should be placed in the position of the SZA corresponding to this
wavelength. All SZA's for all vertical profile measurements should be the same. Vertically pointed

51

How to use GRASP

lidar should have this value set to 0. Note: Keep in mind that retrieved aerosol vertical profiles will
be retrieved for vertically projected altitudes, i.e. if your lidar is inclined, the maximum altitude of the
profile will be equivalent to Zmax*cos(SZA).

Step 3. Backscatter of molecular profile

Backscatter vertical profile is calculated inside of GRASP based on standard atmosphere model for
each lidar wavelength[1]:

βmol(Zi,λ) = N * σ(λ) * (P(Zi)/PSA) * (TSA/T(Zi))

 where:

• N molecular number density

• σ(λ) total Rayleigh cross section per molecule, which analytical formula can be written like σ(λ)
= A * λ -B-C*#-D/λ

• Psa pressure of standard atmosphere model

• Tsa temperature of standard atmosphere model

• P(Zi) pressure profile of atmosphere

• T(Zi) temperature profile of atmosphere

Step 4. Reducing the number of points in profiles

GRASP/GARRLiC can use arbitrary altitude/range scale. However, to keep number of retrieved
parameters reasonable and to fight higher noise contamination of lidar signals at higher altitudes, it is
recommended to use a logarithmical altitude/range scale with NZ points to represent aerosol profiles
in the atmosphere. For that, we have to present all vectors (altitude/range vector and profiles of lidar
signals) in logarithmically equidistant manner.

1. Move to logarithmic scale and find altitude/range step:

logarithmic scale: Zi
lg = lg(Zi)

step in log scale: #Z = (Zmax lg - Zmin
lg)/NZ

logarithmic altitude ranges (from hk to hk+1) for averaging data in logarithmically equidistant
manner, k = 1 .. Nz: hk = Z0 lg + (k - 1) * #Z

2. Average the data profiles

Ak = (Σj=1
n Aj(hk, hk+1)) / n

 where:

• A altitude vector or profile of lidar signal or molecular backscatter

• n number of points inside logarithmic altitude ranges

After such procedure, the number of points in three main vectors reduced to NZ points in
logarithmically equidistant manner. These values should be placed in places corresponding to the
zenith wieving (vza or θv) angles for the vavelenths corresponding to lidar or vertical measurements.

Hint: the altitude/range vectors for measurements at all wavelengths have to be the same.

Step 5. Profile normalization

52

How to use GRASP

Values of lidar signals (except for volume depolarization profiles) vary from instrument to instrument,
from detector to detector, that is why GRASP/GARRLiC requires normalized lidar signal. For
consistency with the molecular optical depth, the profile of the molecular backscatter inside the code
has to be normalized as well. Normalized lidar and backscatter profiles:

A'k = Ak / ∫Zmin
Zmax Ak dZ

 where A represents profile of lidar signal or molecular backscatter.

Caution: integration have to be done using meters in altitudes.

At the end, for each wavelength you have to have normalized lidar profiles and altitude vector. Volume
depolarization profiles don't need to be normalized, the only requirement for such observations is to
be presented in the percentage range i.e. [1.0e-9, 100]

References: Anthony Bucholtz, Rayleigh-scattering calculations for the terrestrial atmosphere,
Optical Society of America, 1995.

4.2.6. How to prepare nephelometer data
GRASP is able to retrieve and simulate nephelometer measurements. This section is devoted to
the definition of the convention to properly account the units and measurement geometry of these
instruments within GRASP standards.

The zero reference of scattering angles in GRASP is 180 °. Thus, in order to introduce the nephelometer
geometry in GRASP sdata, only θ angle (zenith angle) has to be defined, the rest of the angles will be
ignored. The conversion to the GRASP geometry is done as follows:

θG = 180° - θn

Where θG corresponds to sdata angles and θn to the scattering angles of the nephelometer.

GRASP measurement input corresponds to the normalized Phase Matrix element P1,1, and the relation
with scattering function is described below.

GRASP scattering phase function units are:
[F1,1(λ, Θ)] = 1/µm

GRASP scattering phase function units are:

[σ] = 1/µm

The relationship between both is represented by the following expression:

σ = (1/2) * ∫
π

0 F1,1(λ, Θ) * sin(Θ) d Θ

Which means that the normalized Phase Matrix element P1,1 is defined as:
(1/2) * ∫

π
0 P1,1(λ, Θ) * sin(Θ) d Θ = 1 P1,1(λ, Θ) = F1,1(λ, Θ)/σ

If polar neph measurements are used, an additional factor of 4* π is necessary to convert into the units
in GRASP: µm-1Str-1 to µm-1.

4.3. Output module
The output module is responsible for managing results for each segment or entire tile and driving
them to the correspond destination (file or screen). There are two kinds of main output structure into
GRASP: tile and segment. Segment output structure represents the output results obtained from the
retrieval library. Then, core unit compacts it and stores it in a tile output structure, which contains the
results of the entire process.

Output module can be extended in the same way as input module. In the case of the output there are
three kinds of extensions:

53

How to use GRASP

• output segment function: it is called after retrieving a segment and is called with the results of
that single segment.

• output current function: it is called after retrieving each segment but it is called with the partial tile
processed until that moment. In each call to this function, it gets a partial tile nearest to completion.
Last call to that function will send the entire tile results.

• output tile function: at the end of the process, a function is called sending to it the entire tile
results. It can print a complete map of the process.

As the user can see, GRASP is very flexible in the way to work with the output. In a high optimized
process, it can be adapted directly to the format of the output database. By default, GRASP comes with
some ASCII output functions, which allows to print the results in a readable way (ASCII or specific
GRASP format), into a file (using stream library) or on the screen. Additional extensions can be added
to get the output in different formats such us HDF, NetCDF, png plots...

4.3.1. The list of GRASP output parameters
The output from GRASP is quite complex and strongly dependent on the settings used. As it was
discussed in Section 4.1.2, “Retrieved characteristics”, there are two kinds of output products: direct
and derived. Direct results are the values directly inverted in the initial guess array, then after obtaining
them, forward model is called one more time to obtain the derived products. The list of direct and
derived products obtained depends on the data and the inversion strategy selected (defined in the
settings file). This chapter contains a complete list of products that can be obtained with GRASP, but
it does not mean that all of them can be obtained with all inversion strategies.

In the internal GRASP output structures there are some products that are repeated between direct
products structure (array with the same shape as initial guess) and derived products. The reason is that
for some applications they are direct information, for others they are derived results. This depends on
input data and inversion strategy, defined in the settings file.

Before defining the output, we are going to define the size of some arrays. This information is needed to
understand the list of the products. For example, when a product such as AOD is defined as many times
as wavelengths, it is because the output will be wavelength dependent (a value for each wavelength):

• NW: Number of wavelengths

• NSD: Number of aerosol components

• NKNOISE: Number of noises defined

• NPARS: Number of parameters to be retrieved

The following list includes all products that can be obtained using GRASP:

• Number of iterations (niter)

• Total final measurement fitting residual for multi-pixel retrieval (rest)

• Detailed (i.e., separated by the type of observation) final absolute measurement fitting residuals for
segment (resat)

• Detailed (i.e., separated by the type of observation) final relative measurement residuals for segment
(resrt)

• If SD (size distribution) retrieved in form of binned SD, the number of grid radii for SD (used to
print output) (radius)

• If SD retrieved in form of binned SD, grid radii

54

How to use GRASP

• If the pre-calculated lognormal bins where used, the function describing each lognormal SD bin
(used to print output) (SDL)

• Main output for each single pixel (for both single- and multiple-pixel retrievals):

• Single pixel total residual (meas. + smoothness constraints) (res)

• Detailed absolute measurement residuals (resa[NKNOISE])

• Detailed relative measurement residuals (resr[NKNOISE])

• Retrieved aerosol and surface reflectance parameters (par[NPARS])

• Angstrom exponent (Aexp)

• For each wavelength:

• Spectral total aerosol extinction (extt)

• Spectral total aerosol single scattering albedo (ssat)

• Spectral total aerosol absorption extinction (aext)
If retrieved aerosol consist of several components:

• Spectral extinction for each component (ext[NSD])

• Spectral single scattering albedo for each component (ssa[NSD])

• Real part of refractive index for each aerosol component (mreal[NSD])

• Imaginary part of refractive index for each component(mimag[NSD])

• If SD retrieved in form of binned SD, the optical properties can be calculated for fine and coarse
modes, separated using chosen inflection radii:

• Volume median radius (rv)

• Standard deviation (std)

• Concentration (cv)

• Effective radius (reff)

• Spectral extinction for each wavelength (ext[NW])

• Phase matrix parameters:

• Number of scattering angles (nangle)

• Values of scattering angles (angles)

• For each pixel and for all the wavelengths:

• Phase matrix elements for each aerosol component ph11, ph12, ph22, ph33, ph34, ph44

• Total aerosol phase matrix elements pht11, pht12, pht22, pht33, pht34, pht44

• Lidar and depolarization ratios for each aerosol component (lr, dlpr)

• Total aerosol lidar and depolarization ratios (lrt, dlprt)

• Phase matrix norm. The analytical expresion used to calculate the norm is:
Norm = (1/2) * ∫

π
0 P1,1(λ, Θ) * sin(Θ) d Θ

55

How to use GRASP

However, in order to achieve an optimal degree of accuracy it is recomended to perform this
integration trought the Simpson rule with 721 bins in the logaritmic space.

• Asymmetry parameter. The analytical expresion used to calculate this magnitude is:
< cos(Θ) > = (1/2) * ∫

π
0 P1,1(λ, Θ) * sin(Θ) * cos(Θ) d Θ

It is recomended to perform the numerical calculation of the integral analogously to the case of
the phase matrix norm.

• If chemical composition is retrieved, then for each pixel and each aerosol component:

• Relative humidity (rh(NSD))

• Fraction of soluble (fslbl(NSD))

• Insoluble fractions of soot (fsoot(NSD))

• Insoluble fractions of iron (firon(NSD))

• Insoluble fractions of “quartz” (fslbl(NSD))

• Water fraction (fwtr(NSD))

• Surface reflectance parameters for each pixel and for each wavelength:

• All parameters of BRDF

• All parameters of BPRDF

• Surface Albedo

• Lidar characteristics for each pixel:

• Levels for vertical profiles

• Vertical profiles for retrieved aerosol components (avp(NSD))

• Lidar optical characteristics for each pixel and for each wavelength:

• Aerosol extinction profiles (σaer(λ, h)). In order to obtain this magnitude from the variables in
the standard GRASP output file, the column aerosol optical depth just needs to be weighted by
the normalized aerosol vertical profile for each mode.

σaer,i(λ, h) = τi * avpi(h)

If two or more aerosol modes are included, the total extinction profile can be obtained adding
up all profiles.

σaer(λ, h) = Σi=1
n τi * avpi(h)

• Aerosol backscatter profiles (βaer(λ, h)). To obtain this magnitude it is only necessary to divide
the aerosol extinction profile of each mode by its corresponding Lidar ratio.

βaer(λ, h) = Σi=1
n σaer,i(λ, h) / Si(λ)

• Aerosol absorption profiles (σaer
abs

(λ, h)). In order to obtain this magnitude from the variables
in the standard GRASP output file, the column aerosol absorption optical depth (τi

abs) just needs
to be weighted by the normalized aerosol vertical profile for each mode.

σaer
abs

(λ, h) = Σi=1
n τi

abs * avpi(h)

• SSA profiles (ω0(λ, h)). Once all the previous described magnitudes has been calculated the
calculation of SSA profiles is inmidiate:

56

How to use GRASP

ω0(λ, h) = σaer
scat

(λ, h) / σaer(λ, h) = (σaer(λ, h) - σaer
abs

(λ, h)) / σaer(λ, h)

• Lidar ratio profiles (S(#, h)):

Saer(λ, h) = σaer(λ, h) / βaer(λ, h)

• Phase matrix (Pj, k(λ, Θ, h)):

Pj,k(λ, Θ, h) = Σi=1
n Pj,k

i
(λ, Θ) σaer,i

scat
(λ, h) / σaer

scat
(λ, h)

• Lidar depolarization profiles (δ(λ, h)):

δ(λ,#) = (P1,1(λ, 180°, h) - P2,2(λ, 180°, h)) / (P1,1(λ, 180°, h) + P2,2(λ, 180°, h))

• Retrieved lidar calibration coefficients (for lidar wavelength only)

• Fit of every measured characteristic for each pixel and for each wavelength

• Error estimation for each pixel:

• Standard deviations of the random errors of the retrieved parameter logarithms (~relative errors)
(ERRP)

• Standard deviation of systematic errors of the retrieved parameter logarithms (BIASP)

• Standard deviations of the random errors of the retrieved extinction for each aerosol component
(~relative errors) (ERR_ext)

• Standard deviations of systematic errors of the retrieved extinction for each aerosol component
(BIAS_ext)

• Standard deviations of the random errors of the retrieved total extinction (~relative errors)
(ERR_extt)

• Standard deviations of systematic errors of retrieved total extinction (BIAS_extt)

• Standard deviations of the random errors of the retrieved single scattering albedo for each aerosol
component (~relative errors) (ERR_ssa)

• Standard deviations of systematic errors of retrieved single scattering albedo for each aerosol
component (BIAS_ssa)

• Standard deviations of the random errors of the of retrieved total single scattering albedo
(~relative errors) (ERR_ssat)

• Standard deviations of systematic errors of the retrieved total single scattering albedo (BIAS_ssat)

• Standard deviations of the random errors of the of retrieved lidar ratio for each aerosol component
(ERR_lr)

• Standard deviations of systematic errors of the lidar ratio for each aerosol component (BIAS_lr)

• Standard deviations of the random errors of the of retrieved depolarization ratio for each aerosol
component (ERR_dr)

• Standard deviations of systematic errors of the depolarization ratio for each aerosol component
(BIAS_dr)

• Radiative forcing for each pixel:

• The heights for forcing output (HLV)

57

How to use GRASP

• Broad band up-ward flux without aerosol at each height (BBUFX0)

• Broad band down-ward flux without aerosol at each height (BBDFX0)

• Broad band up-ward flux with aerosol at each height (BBUFXA)

• Broad band down-ward flux with aerosol at each height (BBDFXA)

• Estimations of aerosol particulate matter at the ground level (PM)

• Aerosol type for each pixel (requires that the optical properties for fine and coarse modes are
included in the calculated output)

4.3.2. GRASP classic output description

In this section the GRASP classic output format is going to be described for both if the
output.segment.stream setting parameter has been set to "screen", in this case all output information
will be printed on terminal; or alternatively if a path to an ascii file is provided. However, note that
there are more possibilities of GRASP output formatting which can differ from what is going to be
shown here.

The GRASP classic output is divided in three main sections:

• Information of the residuals.
This information is place in the head of the classic output. It contains one line per pixel with
information about convergence and residuals after the last iteration. The first float number in each
of these lines corresponds to the absolute value of the total inversion residual of the corresponding
pixel. Then, the absolute and relative residuals for each noise type defined in settings can be found.

Figure 4.7. An example of the residual information in GRASP classic output

 noise abs rel noise abs rel
0.358 1: 0.777E-03 0.262 % 2: 0.317E-03 0.115 % pixel # 1 Residual after iteration # 21
0.288 1: 0.124E-03 0.425 % 2: 0.341E-03 0.155 % pixel # 2 Residual after iteration # 17

After the residuals, the information of date, time, longitude and latitude of each pixel can be found.

The next part of the output is a list of all the retrieved parameters as they are calculated in the
inversion matrix, each column is associated with a different pixel.

58

How to use GRASP

Figure 4.8. An example of the vector of retrieved parameters in GRASP classic
output

 Parameter #, Vector of retrieved parameters
 1 0.31000E-03 0.21000E-03
 2 0.38939E-02 0.89239E-02
 3 0.19772E-01 0.13772E-01
 4 0.45246E-01 0.55232E-01
 5 0.50813E-01 0.68823E-01
 6 0.35267E-01 0.23481E-01
 7 0.16086E-01 0.24567E-01
 8 0.41738E-02 0.67799E-02
 9 0.58516E-03 0.24514E-03
 10 0.44740E-04 0.44740E-04
 11 0.50000E-05 0.43456E-05
 12 0.13710E-04 0.19340E-04
 13 0.50331E-04 0.548370-04
 14 0.18693E-03 0.20019E-03
 15 0.67248E-03 0.23535E-03
 16 0.22029E-02 0.11244E-02
 17 0.59918E-02 0.60022E-02
 18 0.12137E-01 0.23731E-01
 19 0.17703E-01 0.19822E-01
 20 0.18786E-01 0.12441E-01
 21 0.14473E-01 0.29249E-01
 22 0.79026E-02 0.08708E-02
 23 0.29037E-02 0.33077E-02
 24 0.69835E-03 0.54197E-03
 25 0.11000E-03 0.21002E-03

• Detailed parameters.
In the next part of the output different atmospheric and surface parameters can be found. Which
of them are shown and which are not is defined by the settings parameters in retrieval.products
part. Each product is identified by a header where the name and some information is provided.
The different columns corresponds to the different pixels analougously to the case of the vector of
retrieved parameters.

If there are more than one atmospheric component in the retrieval the information corresponding to
each mode is expressed differently depending on if it is an optical or microphysical product. In the
case of microphysical products the information of the different components is expressed in different
lines which start with an identificative integer.

Figure 4.9. An example of the aerosol volume concentration in GRASP classic
output for two aerosol modes

Aerosol volume concentration (um^3/um^2 or um^3/um^3)
 1 0.47855E-01 0.68932E-01
 2 0.22771E-01 0.13793E-01

However, in the case of optical products, the corresponding mode of the product is indicated in the
product header name, and each line is associated with a wavalength which is also indicated in the
beginning of it.

59

How to use GRASP

Figure 4.10. An example of the Aerosol Optical Depth in GRASP classic output
for two aerosol modes

Wavelength (um), AOD_Total (unitless or 1/um)
 0.44000 0.45107E+00 0.354561E+00
 0.67500 0.18630E+00 0.223511E+00
 0.87000 0.99709E-01 0.782688E-01
 1.02000 0.66909E-01 0.456723E-01
Wavelength (um), AOD_Particle_mode_1 (unitless or 1/um)
 0.44000 0.43880E+00 0.30345E+00
 0.67500 0.17344E+00 0.20230E+00
 0.87000 0.86553E-01 0.701544-01
 1.02000 0.53769E-01 0.405612E-01
Wavelength (um), AOD_Particle_mode_2 (unitless or 1/um)
 0.44000 0.12274E-01 0.54561E-01
 0.67500 0.12856E-01 0.23462E-01
 0.87000 0.13156E-01 0.82655E-02
 1.02000 0.13140E-01 0.65231E-02

• Information of the fitting.
In the final part of the GRASP classic output the information is organized in different blocks. In
each of these blocks the measurements associated to each wavelength and pixel of the SDATA
and the fitted measurements after the final iteration can be found. Each measurement is separated
by a header where the measurement in the sdata is indicated as meas_+"measurement name", and
the fitted as fit_+"measurement name". If the measurement is defined by a specific geometry, this
geometry is also included here. As for example the Solar Zenith Angle (sza), the zenith angle of
the measurement (vis), the azimuth angle of the measurement (fis) or the corresponding scattering
angle (sca_ang).

Figure 4.11. An example of the fitting information in GRASP classic output
for one wavelenght of one pixel with TOD and irradiance measurements

--
pixel # 1 wavelength # 1 0.440 (um)
--
 meas_tod fit_tod
 0.70302E+00 0.70290E+00
 # sza vis fis sca_ang meas_I fit_I
 1 70.00 110.00 183.50 3.29 0.67436E+00 0.67369E+00
 2 70.00 110.00 184.00 3.76 0.62857E+00 0.62765E+00
 3 70.00 110.00 185.00 4.70 0.57672E+00 0.57630E+00
 4 70.00 110.00 186.00 5.64 0.55140E+00 0.55151E+00
 5 70.00 110.00 187.00 6.58 0.53713E+00 0.53745E+00
 6 70.00 110.00 188.00 7.52 0.52757E+00 0.52796E+00
 7 70.00 110.00 190.00 9.40 0.51327E+00 0.51358E+00
 8 70.00 110.00 192.00 11.27 0.50043E+00 0.50059E+00
 9 70.00 110.00 194.00 13.15 0.48706E+00 0.48712E+00
 10 70.00 110.00 196.00 15.03 0.47341E+00 0.47335E+00
 11 70.00 110.00 198.00 16.91 0.45892E+00 0.45876E+00
 12 70.00 110.00 200.00 18.78 0.44384E+00 0.44361E+00
 13 70.00 110.00 205.00 23.47 0.40481E+00 0.40449E+00
 14 70.00 110.00 210.00 28.15 0.36583E+00 0.36555E+00
 15 70.00 110.00 215.00 32.83 0.32882E+00 0.32864E+00
 16 70.00 110.00 220.00 37.49 0.29500E+00 0.29489E+00
 17 70.00 110.00 225.00 42.15 0.26492E+00 0.26483E+00
 18 70.00 110.00 230.00 46.80 0.23864E+00 0.23853E+00
 19 70.00 110.00 240.00 56.05 0.19656E+00 0.19638E+00
 20 70.00 110.00 250.00 65.23 0.16617E+00 0.16595E+00
 21 70.00 110.00 260.00 74.32 0.14471E+00 0.14453E+00
 22 70.00 110.00 270.00 83.28 0.13010E+00 0.13000E+00
 23 70.00 110.00 280.00 92.08 0.12075E+00 0.12071E+00
 24 70.00 110.00 300.00 108.94 0.11330E+00 0.11323E+00
 25 70.00 110.00 320.00 124.02 0.11489E+00 0.11461E+00
 26 70.00 110.00 340.00 135.46 0.11897E+00 0.11849E+00

60

How to use GRASP

4.4. Forward model
GRASP has several forward models and each of them are used (or not) depending on the application.
For example, to retrieve nephelometer data, just single scattering (particle properties) will be used.
For other applications, GRASP has also a multiple scattering module (radiative transfer) and a lidar
signal module.

4.4.1. How to use the forward model: Derived products
and reprocesing data

As it was explained in Section 4.1.2, “Retrieved characteristics” section, the retrieval algorithm
works iteratively over an array of parameters (in its first definition it is called the initial guess),
until it represents the best solution. This solution array has same shape as the initial guess (the same
parameters and defined in the same position). Once it is obtained, a final call of the forward model
with the resulting array provides a complete list of output products.

For some applications, it can be useful to use the forward model without inverting any data. It can
be done easily in GRASP with the use of the setting parameter retrieval.mode=forward. When no
retrieval is performed, just one call of forward model is performed. If in the initial guess array the
user has set an aerosol model, it will be used inside of the forward model obtaining therefore an entire
output structure, with information in all fields.

This procedure can be used also to reprocess some data. If output parameters of a retrieval are
stored, then they can be set as initial guess and then, running GRASP with the same settings, except
for retrieval.mode=forward the entire output can be obtained again. This procedure can be used to
reprocess data with many objectives such as saving storage space (just save the output array of grasp
and reprocess to obtain the rest, if it is needed) or obtaining extra products in the future.

4.4.2. Synthetic data
The previous procedure can also help to simulate the input data. It is useful because a valid geometry
is necessary in the input data to set an SDATA file. In this case, an aerosol model is set as an initial
guess and the code works just for the forward run. Then, by using retrieval.debug.simulated_sdata_file
parameter, the user can set a path to the simulated files. A SDATA file will be dump to that path where
the geometry is the same and the measurements are filled with the output results of the forward run.
Then, this SDATA file can be used to self-consistency tests, where synthetic data is retrieved.

4.5. Aerosol modeling in GRASP
Due to the versatility and the high degree of generalisation of GRASP, there are different approaches
to model aerosols in order to maximize the possibilities of the different retrieval schemes. Each of the
approaches described below presents different advantages depending on the information available in
the input measurements, the desired output products or the available computation time.

4.5.1. Kernels
In this approach the retrieved characteristics which determine the optical properties of aerosols are the
size distribution, the real and imaginary refractive indexes, and the percentage of spherical particles
(the non-spherical part is modeled as spheroids). The calculation of the radiative properties (phase
matrix, scattering and absorption cross-sections) from these initial characteristics is made through
four-dimensional look-up-tables called "Kernels".

The four dimensions of the Kernels are: the size parameter, sphericity and the real and the imaginary
refractive indices. Due to the extensive nature of these kernels, this approach represents the less
restricted methodology, because any possible combination of the represented characteristics can be
obtained as the solution.

61

How to use GRASP

The lack of intrinsic restrictions of this approach (note that as in all GRASP retrievals, apriori
constraints can be set for any characteristic) presents obvious advantages. However, the general
nature of Kernels methodology normally requires input measurements containing a higher amount of
information in comparison with other approaches.

There are three different ways to represent the aerosol size distribution, from the most general to
the simplest: triangle bins, lognormal bins and precalculated lognormal bins. The corresponding
characteristics names in the GRASP YAML settings file are: “size_distribution_triangle_bins”,
“size_distribution_lognormal” and “size_distribution_precalculated_lognormal”. Independently of
the selected representation of the aerosol size distribution, the rest of the steps of this methodology to
obtain aerosol radiative properties are the same.

In the triangle bins representation the value of each bin is retrieved independently from the others, and
it corresponds to the integrated value following the trapezoidal rule between the provided size limits.
The lognormal bins approach is a simplified version of the former, where each aerosol size distribution
mode is modeled as a gaussian function only represented by three parameters: the center, the standard
deviation and the norm. The former value is the aerosol concentration of the corresponding mode.
The precalculated lognormal bins size distribution represents a step further in the simplification of this
characteristic. In this case each aerosol mode is also represented by a Gaussian function. However,
the center and the standard deviation are fixed to a predefined value and only the norm (aerosol
concentration) of each mode is retrieved.

4.5.2. Models
The main retrieved aerosol products of this approach are the fractions of the total aerosol concentration
of precalculated aerosol models. These precalculated models correspond to the main aerosol types
established by all our previous experiences (Ex: smoke, urban, oceanic and dust). Each of these
models correspond to a fixed particle size distribution and refractive indices, containing the already
calculated phase matrix, and the extinction and absorption cross-sections. The total aerosol retrieved
characteristics can be obtained by weighting the characteristics used to calculate each of these models
by its corresponding volume concentration.

The significant reduction of retrieved parameters makes this approach very suitable for the retrieval
of input measurements with a reduced amount of information. The absence of Kernels in the whole
process makes this option by far the fastest of all. One of the main drawbacks of this methodology is
the fact that the inversion is intrinsically constrained by the selected models. However, these models
have been carefully selected to be suitable to cover almost all atmospheric situations. Moreover, they
can be recalculated or extended in order to cover specific situations.

An example of the necessary settings to use this approach can be found below. Where in the phase
matrix section the bin of each mode no longer represents the limit radius but the accounted aerosol
models. Particle size distribution, refractive indexes and sphericity characteristics are substituted by
another characteristic called "aerosol_model_concentration".

forward_model:

 phase_matrix:
 size_binning_method_for_triangle_bins: logarithm
 number_of_elements: 4
 kernels_folder: "models_ang35_wl22_optimized"
 radius:
 mode[1]:
 bins: [1., 2., 3., 4., 5.]

 .
 .
 .

 constraints:
 characteristic[1]:
 type: aerosol_model_concentration
 retrieved: true
 mode[1]:

62

How to use GRASP

 initial_guess: #smoke #urban #oceanic #dust
 value: [0.9, 0.4, 0.4, 0.4., 0.4]
 min: [0.000005, 0.000005, 0.000005, 0.000005, 0.000005]
 max: [1.0, 1.0, 1.0, 1.0, 1.0]
 index_of_wavelength_involved: [0, 0, 0, 0, 0]
 single_pixel:
 .
 .
 .

 characteristic[2]:
 type: aerosol_concentration
 retrieved: true
 mode[1]:
 initial_guess:
 value: [0.05]
 min: [0.0001]
 max: [5.0]
 index_of_wavelength_involved: [0]
 single_pixel:
 .
 .
 .

4.5.3. Chemistry
The chemistry approach can be seen somehow as an intermediate approach between Kernels and
Models. In this case size distribution and sphericity percentage are directly retrieved as in the
case of Kernels. However, instead of the refractive indexes, here the fractions of the total aerosol
concentration corresponding to the different chemical components are retrieved. The refractive indices
corresponding to each of these components are predefined. Thus, the weighted refractive indexes of
all the fractions in combination with the particle size distribution and the sphericity parameter are used
as input for the Kernels look-up-tables to calculate the radiative properties.

In comparison with the Models approach, where the radiative properties can only be linearly weighted,
the refractive index presents an extra layer of complexity when they are mixed. Because the weighting
methodology used to obtain the total refractive index retains information about the aerosol internal
structure. Two mixing possibilities are available now in GRASP: an internal mixture, where a linear
mixture of the different components is performed; but also a Maxwell-Garnett mixture is available,
where one element is considered as the main host and the rest of the chemical elements are taken as
inclusions inside of it.

In this case the necessary settings to use this approach are very similar to Kernels.
The size distribution can be represented using the three already described possibilities
in the Kernels approach. However, the refractive index characteristics are substituted by
"particle_component_volume_fractions_linear_mixture" in the case of the linear mixture, or by
"particle_component_fractions_chemical_mixture" in the case of a Maxwell-Garnett mixture. An
extra section called "chemistry" has to be added in the Forward model part, where it is provided: the
names of each chemical component accounted in the inversion, the soluble component (if necessary)
and the path to the directory where these predefined refractive index look-up-tables are located.

 forward_model:

 aerosol:
 chemistry:
 folder: "chemistry_refractive_indexes/"
 soluble: "ammnm_ntrt"
 species:
 mode[1]: ['black_carbon', 'mix_dust','iron_oxide','water']

 phase_matrix:
 size_binning_method_for_triangle_bins: logarithm
 number_of_elements: 1
 kernels_folder: "KERNELS_BASE/"
 radius:
 mode[1]:
 min: 0.05
 max: 15.0

63

How to use GRASP

 .
 .
 .

 constraints:
 characteristic[1]:
 type: size_distribution_triangle_bins
 retrieved: true
 mode[1]:
 initial_guess:
 value: [1.4715e-05, 1.4715e-03, ..., 1.4715e-03, 1.4715e-05]
 min: [0.00001, 0.00001, ..., 0.00001, 0.00001]
 max: [1.0, 1.0, ..., 1.0, 1.0]
 index_of_wavelength_involved: [0, 0, ..., 0, 0]
 .
 .
 .

 characteristic[2]:
 type: particle_component_volume_fractions_linear_mixture
 retrieved: true
 mode[1]:
 initial_guess: #1 #2 #3 #4
 value: [0.00001, 0.0001, 0.0001, 0.0001]
 min: [0.000001, 0.000001, 0.000001, 0.000001]
 max: [0.2, 1.0, 1.0, 1.0]
 index_of_wavelength_involved: [0, 0, 0, 0]
 .
 .
 .

4.5.4. Transport models
The transport models approach constitutes the most complex methodology to model atmospheric
aerosols. This approach has been designed to facilitate the interface between sophisticated aerosol
transport models and GRASP code, both for forward modeling and retrieval. Normally, these complex
transport models work simultaneously with a high number of different aerosol particles with specific
size distributions, shape, optical characteristics, vertical distributions… In the rest of the GRASP
approaches for aerosol modeling only one or two aerosol modes are considered which have all
these aforementioned characteristics totally independent between each other. However, the GRASP
transport model approach is not only an additional interface that enables the possibility to work with
multiple independent aerosol modes. But it is also a tool that allows the conversion between the
characteristics that define the particles in the aerosol transport models (as mass mixing ratio) to the
normal microphysical and optical characteristics that are normally used in GRASP.

GRASP transport model approach consists of 5 main aerosol components similar to MERRA-2 and
CAMS aerosol models: sulphate (SU), desert dust (DU), sea salt (SS), organic (OC) and black carbon
(BC). Each component can exhibit hydrophobic or hydrophilic properties resulting in 15 aerosol
tracers: hydrophilic sulphate (SU), five size bins for hydrophobic dust (DU) and hydrophilic sea
salt (SS), hydrophobic and hydrophilic modes of organic (OC) and black carbon (BC) aerosol . The
concentration and optical depth of each tracer in the model is refined through the mass mixing ratio.
Furthermore, each of these aerosol modes count with its own vertical profile, particle size distribution,
sphericity parameter and all the rest of optical characteristics. Note that the different aerosol tracers
are externally mixed with vertically dependent mass mixing ratios to obtain the corresponding total
aerosol optical properties.

An example of the necessary settings to define the additional aerosol parameters of the transport
models can be found below:

 forward_model:
 phase_matrix:
 size_binning_method_for_triangle_bins: logarithm
 number_of_elements: 4
 use_transport_model: true
 number_of_bins_for_lognormal_size_distribution: [^repeat(43;15)]

64

How to use GRASP

 transport_model:
 vertical_profile: column_average #tracer_average
 tracers: ['du1', 'du2', 'du3', 'du4', 'du5','bc1','bc2','oc1','oc2','ss1', 'ss2', 'ss3', 'ss4', 'ss5','su1']
 hydrophilic: [0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1]
 #hydrophilic: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
 density: [2500., 2650., 2650., 2650., 2650.,1000.,1000.,1800.,1800., 2200., 2200., 2200., 2200.,2200., 1700.]
 kernels_folder: 'KERNELS_BASE' # 'merra2_data_base'
 radius:
 mode[1]: # du1
 min: 0.08
 max: 20.0
 mode[2]: # du2
 min: 0.08
 max: 20.0
 mode[3]: # du3
 min: 0.08
 max: 20.0
 mode[4]: # du4
 min: 0.08
 max: 20.0
 mode[5]: # du5
 min: 0.08
 max: 20.0
 mode[6]: # bc1
 min: 0.0001 #0.002
 max: 5.0
 mode[7]: # bc2
 min: 0.0001 #0.002
 max: 5.0
 .
 .
 .

Where “forward_model.phase_matrix.transport_model.tracers” refers to the
15 aerosol tracers. “forward_model.phase_matrix.transport_model.density” and
“forward_model.phase_matrix.transport_model.hyfrophilic” mark correspondingly the density of dry
tracers and their hygroscopic properties (“0” corresponds to hydrophobic and “1” corresponds to
hydrophilic aerosol).

The rest of the aerosol characteristics are defined following the standard GRASP settings convention
for different aerosol modes:

 constraints:
 characteristic[1]: #1
 type: size_distribution_lognormal
 retrieved: true
 mode[1]:
 initial_guess:
 value: [0.6576, 0.2828]
 min: [0.1, 0.1]
 max: [3.0, 0.9]
 index_of_wavelength_involved: [^repeat(0;2)]
 single_pixel:
 a_priori_estimates:
 lagrange_multiplier: [1.0e-03, 1.0e-03]
 smoothness_constraints:
 difference_order: 0
 lagrange_multiplier: 0.0
 mode[2]:
 initial_guess:
 value: [1.2436, 0.25]
 min: [0.1, 0.1]
 max: [3.0, 0.9]
 index_of_wavelength_involved: [^repeat(0;2)]
 single_pixel:
 a_priori_estimates:
 lagrange_multiplier: [1.0e-03, 1.0e-03]
 smoothness_constraints:
 difference_order: 0
 lagrange_multiplier: 0.0
 mode[3]:
 initial_guess:
 value: [2.2969, 0.344]
 min: [0.1, 0.1]
 max: [3.0, 0.9]
 index_of_wavelength_involved: [^repeat(0;2)]
 single_pixel:

65

How to use GRASP

 a_priori_estimates:
 lagrange_multiplier: [1.0e-03, 1.0e-03]
 smoothness_constraints:
 difference_order: 0
 lagrange_multiplier: 0.0
 mode[4]:
 initial_guess:
 value: [5.3645, 0.707]
 min: [0.1, 0.1]
 max: [6.0, 0.9]
 index_of_wavelength_involved: [^repeat(0;2)]
 single_pixel:
 a_priori_estimates:
 lagrange_multiplier: [1.0e-03, 1.0e-03]
 smoothness_constraints:
 difference_order: 0
 lagrange_multiplier: 0.0
 .
 .
 .

 characteristic[2]:
 type: tracer_level_concentration
 retrieved: true
 mode[1]:
 initial_guess:
 value: [^repeat(0.007;72)]
 min: [^repeat(1e-15;72)]
 max: [^repeat(0.500;72)]
 index_of_wavelength_involved: [^repeat(0;72)]
 single_pixel:
 a_priori_estimates:
 lagrange_multiplier: [^repeat(0;72)]
 smoothness_constraints:
 difference_order: 0
 lagrange_multiplier: 0.0
 mode[2]:
 initial_guess:
 value: [^repeat(0.007;72)]
 min: [^repeat(1e-15;72)]
 max: [^repeat(0.500;72)]
 index_of_wavelength_involved: [^repeat(0;72)]
 single_pixel:
 a_priori_estimates:
 lagrange_multiplier: [^repeat(0;72)]
 smoothness_constraints:
 difference_order: 0
 lagrange_multiplier: 0.0
 mode[3]:
 initial_guess:
 value: [^repeat(0.007;72)]
 min: [^repeat(1e-15;72)]
 max: [^repeat(0.500;72)]
 index_of_wavelength_involved: [^repeat(0;72)]
 single_pixel:
 a_priori_estimates:
 lagrange_multiplier: [^repeat(0;72)]
 smoothness_constraints:
 difference_order: 0
 lagrange_multiplier: 0.0
 mode[4]:
 initial_guess:
 value: [^repeat(0.007;72)]
 min: [^repeat(1e-15;72)]
 max: [^repeat(0.500;72)]
 index_of_wavelength_involved: [^repeat(0;72)]
 single_pixel:
 a_priori_estimates:
 lagrange_multiplier: [^repeat(0;72)]
 smoothness_constraints:
 difference_order: 0
 lagrange_multiplier: 0.0

 characteristic[3]:
 type: real_part_of_refractive_index_spectral_dependent
 retrieved: true
 mode[1]:
 initial_guess: #1 #2 #3 #4 #5 #6
 value: [^repeat(1.53;7)]
 min: [^repeat(1.33;7)]
 max: [^repeat(1.6;7)]
 index_of_wavelength_involved: [^repeat(0;7)]

66

How to use GRASP

 single_pixel:
 smoothness_constraints:
 difference_order: 1
 lagrange_multiplier: 1.0e+1
 multi_pixel:
 smoothness_constraints:
 derivative_order_of_X_variability: 1
 lagrange_multiplier_of_X_variability: 1.0e-1
 derivative_order_of_Y_variability: 1
 lagrange_multiplier_of_Y_variability: 1.0e-1
 derivative_order_of_T_variability: 1
 lagrange_multiplier_of_T_variability: 2.0e-2
 mode[2]:
 initial_guess: #1 #2 #3 #4 #5 #6
 value: [^repeat(1.53;7)]
 min: [^repeat(1.33;7)]
 max: [^repeat(1.6;7)]
 index_of_wavelength_involved: [^repeat(0;7)]
 single_pixel:
 smoothness_constraints:
 difference_order: 1
 lagrange_multiplier: 1.0e+1
 multi_pixel:
 smoothness_constraints:
 derivative_order_of_X_variability: 1
 lagrange_multiplier_of_X_variability: 1.0e-1
 derivative_order_of_Y_variability: 1
 lagrange_multiplier_of_Y_variability: 1.0e-1
 derivative_order_of_T_variability: 1
 lagrange_multiplier_of_T_variability: 2.0e-2
 mode[3]:
 initial_guess: #1 #2 #3 #4 #5 #6
 value: [^repeat(1.53;7)]
 min: [^repeat(1.33;7)]
 max: [^repeat(1.6;7)]
 index_of_wavelength_involved: [^repeat(0;7)]
 single_pixel:
 smoothness_constraints:
 difference_order: 1
 lagrange_multiplier: 1.0e+1
 multi_pixel:
 smoothness_constraints:
 derivative_order_of_X_variability: 1
 lagrange_multiplier_of_X_variability: 1.0e-1
 derivative_order_of_Y_variability: 1
 lagrange_multiplier_of_Y_variability: 1.0e-1
 derivative_order_of_T_variability: 1
 lagrange_multiplier_of_T_variability: 2.0e-2

 .
 .
 .

4.6. Error estimation
GRASP provides rigorous dynamic error estimates of the retrieved characteristics, but also these
calculations are available for some of the derived parameters that GRASP calculates internally.

In order to perform the calculations some extra information for each measurement has to be provided in
the GRASP settings file. Two different kinds of bias can be assumed: “bias_measurements_synthetic”
and “bias_equation”. The units of these bias are the same as the corresponding measurement and the
“error_type” option establishes if they are taken as an absolute or relative value to the measurement.
An example of the definition of these settings can be found below:

 noises:
 noise[1]:
 standard_deviation_synthetic: 0.05
 bias_measurements_synthetic: 0.05
 bias_equation: 0.05
 error_type: relative
 standard_deviation: 0.03
 measurement_type[1]:
 type: I
 index_of_wavelength_involved: [1, 2, 3, 4]
 noise[2]:

67

How to use GRASP

 standard_deviation_synthetic: 0.01
 bias_measurements_synthetic: 0.01
 bias_equation: 0.01
 error_type: absolute
 standard_deviation: 0.01
 measurement_type[1]:
 type: aod
 index_of_wavelength_involved: [1, 2, 3, 4]

In a similar way to other products provided by GRASP, in the “products” section the
“error_estimation” group it is possible to configure how these error estimates are made with the
option “using_Levenberg-Marquardt”. In order to select to what magnitudes are applied, the setting
“retrieved” establishes to provide the error estimates for all retrieved characteristics, and in the
“derived” group the user can select to what of the derived products (ex.: AOD, Angstrom Exponent,
SSA…) these calculations will be applied:

 products:
 error_estimation:
 using_Levenberg-Marquardt: true
 derived:
 aerosol:
 lidar: true
 optical_properties: true
 retrieved: true

The error estimation of the selected magnitudes, retrieved and derived, can be found in the end of the
classic GRASP output file separated in three: “Total standard deviations”, “Standard deviations” and
“BIAS - Standard deviation”. An example of an output of the error estimates can be seen below:

 Total standard deviations of retrieved parameter logarithms (~relative errors) :

 Date: 2014-08-22
 Time: 14:58:12
 1 0.84496E+00
 2 0.59295E+00
 3 0.32039E+00
 4 0.12886E+00
 5 0.10403E+00
 .
 .
 .

 Standard deviations of retrieved parameter logarithms (~relative errors) :

 Date: 2014-08-22
 Time: 14:58:12
 1 0.84343E+00
 2 0.35544E+00
 3 0.15784E+00
 4 0.11046E+00
 5 0.84152E-01
 .
 .
 .

 --
 BIAS - Standard deviation of systematic errors of retrieved parameter logarithms :
 --
 Date: 2014-08-22
 Time: 14:58:12
 1 0.50815E-01
 2 0.47461E+00
 3 0.27880E+00
 4 0.66360E-01
 5 -0.61162E-01
 .
 .
 .

 INVSING = 0

68

How to use GRASP

 --
 Total standard deviations of retrieved optical characteristic logarithms (~relative errors) :
 --
 Date: 2014-08-22
 Time: 14:58:12
 Wavelength (um), Aerosol Optical Depth (Random) for Particle component 1
 0.4400 0.17618E-01
 0.6750 0.68020E-01
 0.8700 0.86484E-01
 1.0200 0.82026E-01
 Wavelength (um), Single Scattering Albedo (Random) for Particle component 1
 0.4400 0.59979E-01
 0.6750 0.49679E-01
 0.8700 0.25789E-01
 1.0200 0.22196E-01
 --
 Standard deviations of retrieved optical characteristic logarithms (~relative errors) :
 --
 Date: 2014-08-22
 Time: 14:58:12
 Wavelength (um), Aerosol Optical Depth (Random) for Particle component 1
 0.4400 0.65241E-02
 0.6750 0.13940E-01
 0.8700 0.19455E-01
 1.0200 0.25821E-01
 Wavelength (um), Single Scattering Albedo (Random) for Particle component 1
 0.4400 0.12061E-01
 0.6750 0.99402E-02
 0.8700 0.13855E-01
 1.0200 0.18953E-01

 BIAS - Standard deviations of systematic errors of retrieved optical characteristic logarithms :

 Date: 2014-08-22
 Time: 14:58:12
 Wavelength (um), Aerosol Optical Depth (Bias) for Particle mode 1
 0.4400 0.16370E-01
 0.6750 0.66575E-01
 0.8700 0.84366E-01
 1.0200 0.77988E-01
 Wavelength (um), Single Scattering Albedo (Bias) for Particle mode 1
 0.4400 0.58718E-01
 0.6750 0.48694E-01
 0.8700 0.21934E-01
 1.0200 0.13280E-01

In order to make a proper interpretation of the error estimates provided by GRASP two considerations
have to be considered. First, the random (standard deviation) and the bias components for each
parameter have to be added quadratically to obtain the total error:

Secondly, GRASP operates in the logarithmic space, which includes de error estimates. Thus, some
calculations are needed in order to represent together the value of the different magnitudes and the
corresponding error estimates:

ln(a*) = ln(a) ± σa

Thus:

a exp(σa) = a*
high

a exp(- σa) = a*
low

69

Bibliography
[Dubovik 2011] Atmospheric Measurement Techniques. O. Dubovik, M. Herman, A. Holdak, T. Lapyonok,

D. Tanre, J. L. Deuze, F. Ducos, A. Sinyuk, and A. Lopatin. Statistically optimized inversion
algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite
observations. “Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties
from spectral multi-angle polarimetric satellite observations”. 975-1018. 4. 5. 10.5194/amt-4-975-2011.
http://www.atmos-meas-tech.net/4/975/2011/. 2011.

[Tanré 2011] Atmospheric Measurement Techniques. D. Tanre, F. M. Breon, J. L. Deuze, O. Dubovik, F.
Ducos, and Fran. Remote sensing of aerosols by using polarized, directional and spectral measurements
within the A-Train: the PARASOL mission. “Remote sensing of aerosols by using polarized, directional
and spectral measurements within the A-Train: the PARASOL mission”. 1383-1395. 4. 7. 10.5194/
amt-4-1383-2011. http://www.atmos-meas-tech.net/4/1383/2011/. 2011.

[Kokhanovsky 2010] Atmospheric Measurement Techniques. A. A. Kokhanovsky, J. L. Deuze, D. J. Diner, O.
Dubovik, F. Ducos, C. Emde, M. J. Garay, R. G. Grainger, A. Heckel, M. Herman, I. L. Katsev, J.
Keller, R. Levy, P. R. J. North, A. S. Prikhach, V. V. Rozanov, A. M. Sayer, Y. Ota, D. Tanre, G.
E. Thomas, and E. P. Zege. The inter-comparison of major satellite aerosol retrieval algorithms using
simulated intensity and polarization characteristics of reflected light. “The inter-comparison of major
satellite aerosol retrieval algorithms using simulated intensity and polarization characteristics of reflected
light”. 909-932. 3. 4. 10.5194/amt-3-909-2010. http://www.atmos-meas-tech.net/3/909/2010/. 2010.

70

Glossary
C
Cell A spatial extent of neighbouring pixels (e.g. 2x2 or 5x5 pixels). The base of

a segment.
See Also Segment, Pixel, Tile.

P
Pixel A picture element. The smallest unit of acquisition.

See Also Cell, Segment, Tile.

S
Segment A temporal stack of cells. The processing unit of the GRASP algorithm.

See Also Cell, Pixel, Tile.

T
Tile A set of neighbouring segments, that can be loaded together in memory. The

processing unit of the GRASP framework.
See Also Cell, Pixel, Segment.

71

	The GRASP Package. An overview.
	Table of Contents
	Foreword
	1. Caveat
	2. What you will find in this document
	3. What you won't find in this document
	4. Versioning

	Chapter 1. Introduction
	1.1. Scientific background and heritage
	1.2. Generalized aspects of GRASP algorithm and package
	1.2.1. Generalized approach of numerical inversion
	1.2.2. Practical generalization of the algorithm for atmospheric remote sensing
	1.2.3. Adaptation of GRASP for general user

	1.3. Concept of GRASP software package

	Chapter 2. GRASP software package
	2.1. GRASP architecture
	2.2. GRASP input and retrieved data
	2.2.1. Measurements and retrieved parameters
	2.2.2. GRASP inputs
	2.2.3. GRASP input data structures
	2.2.4. Input text files for running the Scientific Core alone

	2.3. GRASP Scientific Core algorithm
	2.3.1. Overall structure
	2.3.2. Forward model
	2.3.3. Numerical Inversion
	2.3.3.1. Single-pixel inversion
	2.3.3.2. Multi-pixel inversion

	2.4. GRASP Control Unit
	2.4.1. Configuration manager
	2.4.2. Controller Module
	2.4.3. Abstract input and output drivers
	2.4.4. Concrete input and output data drivers
	2.4.5. GRASP file organization
	2.4.6. External Libraries used by GRASP code

	Chapter 3. Installation
	3.1. Introduction
	3.2. Hardware requirements
	3.3. Operating Systems
	3.4. Access to GRASP Open repository
	3.5. Building and installing GRASP
	3.5.1. Dependencies
	3.5.2. Basic installation of GRASP
	3.5.3. Advanced compilation
	3.5.3.1. Custom installation using make
	3.5.3.2. Custom installation using cmake
	3.5.3.3. Constants sets

	3.6. Running the code
	3.6.1. Usage of GRASP: The configuration file

	3.7. Code repository and extensions
	3.7.1. GRASP Manager

	3.8. Known problems

	Chapter 4. How to use GRASP
	4.1. How to run the code
	4.1.1. Settings file
	4.1.1.1. HELP argument
	4.1.1.2. Extending settings: command line, import and template statements
	4.1.1.3. Streams

	4.1.2. Retrieved characteristics
	4.1.2.1. Initial guess through the algorithm

	4.1.3. Noise simulation

	4.2. Input module
	4.2.1. The SDATA format
	4.2.2. Angle definition
	4.2.3. Input information for characteristics
	4.2.4. How to prepare the photometer data
	4.2.5. How to prepare the lidar data
	4.2.6. How to prepare nephelometer data

	4.3. Output module
	4.3.1. The list of GRASP output parameters
	4.3.2. GRASP classic output description

	4.4. Forward model
	4.4.1. How to use the forward model: Derived products and reprocesing data
	4.4.2. Synthetic data

	4.5. Aerosol modeling in GRASP
	4.5.1. Kernels
	4.5.2. Models
	4.5.3. Chemistry
	4.5.4. Transport models

	4.6. Error estimation

	Bibliography
	Glossary

